P-r-o-t-e-i-n filled foods.
knackwurst, nectarines and ravioli
nCr + nCr-1 = n!/[r!(n-r)!] + n!/[(r-1)!(n-r+1)!] = n!/[(r-1)!(n-r)!]*{1/r + 1/n-r+1} = n!/[(r-1)!(n-r)!]*{[(n-r+1) + r]/[r*(n-r+1)]} = n!/[(r-1)!(n-r)!]*{(n+1)/r*(n-r+1)]} = (n+1)!/[r!(n+1-r)!] = n+1Cr
n p =n!/(n-r)! r and n c =n!/r!(n-r)! r
This browser is totally bloody useless for mathematical display but...The probability function of the binomial distribution is P(X = r) = (nCr)*p^r*(1-p)^(n-r) where nCr =n!/[r!(n-r)!]Let n -> infinity while np = L, a constant, so that p = L/nthenP(X = r) = lim as n -> infinity of n*(n-1)*...*(n-k+1)/r! * (L/n)^r * (1 - L/n)^(n-r)= lim as n -> infinity of {n^r - O[(n)^(k-1)]}/r! * (L^r/n^r) * (1 - L/n)^(n-r)= lim as n -> infinity of 1/r! * (L^r) * (1 - L/n)^(n-r) (cancelling out n^r and removing O(n)^(r-1) as being insignificantly smaller than the denominator, n^r)= lim as n -> infinity of (L^r) / r! * (1 - L/n)^(n-r)Now lim n -> infinity of (1 - L/n)^n = e^(-L)and lim n -> infinity of (1 - L/n)^r = lim (1 - 0)^r = 1lim as n -> infinity of (1 - L/n)^(n-r) = e^(-L)So P(X = r) = L^r * e^(-L)/r! which is the probability function of the Poisson distribution with parameter L.
Combinations of r from n without replacement is c(n,r) = n!/(n-r)!r! c(n,r) = 23!/20!3! c(n,r) = 1771.
The likely word is "preparation" (prior actions before an event or activity; making foods)
nCr=n!/(r!(n-r)!)
n(n-r)/r
yeah, but i dont no wot is gonna hapen cause 2 me it sounds like a stupid idea. oh n ps. im 19 n if u r not above 18 n u r on this web, it gives u all bad answers so if u r lower than 18 than u r so dumb n stupid n u dont evn no if this webs answers r rit or rong, so scram, butt-face
P(n,r)=(n!)/(r!(n-r)!)This would give you the number of possible permutations.n factorial over r factorial times n minus r factorial
If you have n objects and you are choosing r of them, then there are nCr combinations. This is equal to n!/( r! * (n-r)! ).