false
by switching the truth values of the hypothesis and conclusion, it is called the contrapositive of the original statement. The contrapositive of a true conditional statement will also be true, while the contrapositive of a false conditional statement will also be false.
False. Zygotes are formed when a sperm fertilizes an egg cell, resulting in a fertilized egg. Reproductive cells are actually called gametes, which include sperm and egg cells.
Let us consider "This statement is false." This quotation could also be read as "This, which is a statement, is false," which could by extent be read as "This is a statement and it is false." Let's call this quotation P. The statement that P is a statement will be called Q. If S, then R and S equals R; therefore, if Q, then P equals not-P (since it equals Q and not-P). Since P cannot equal not-P, we know that Q is false. Since Q is false, P is not a statement. Since P says that it is a statement, which is false, P itself is false. Note that being false does not make P a statement; all things that are statements are true or false, but it is not necessarily true that all things that are true or false are statements. In summary: "this statement is false" is false because it says it's a statement but it isn't.
False
The answer is false
False
true but i don't know why?
A conditional statement is indeed a statement that can be put in the form "if A, then B". The only time this conditional statement is false is when both A is true and also B is false.Read more: http://wiki.answers.com/What_is_a_conditional_statement#ixzz1lda5tB6E
No, not always. It depends on if the original biconditional statement is true. For example take the following biconditional statement:x = 3 if and only if x2 = 9.From this biconditional statement we can extract two conditional statements (hence why it is called a bicondional statement):The Conditional Statement: If x = 3 then x2 = 9.This statement is true. However, the second statement we can extract is called the converse.The Converse: If x2=9 then x = 3.This statement is false, because x could also equal -3. Since this is false, it makes the entire original biconditional statement false.All it takes to prove that a statement is false is one counterexample.
True
The statement that the lifestyles of nobles was underprivileged is false. Nobles lived in castles or manors and they had great privileges. Nobles were well-regarded and came from elite families. The statement that nobles handled some of the manual labor in their fields is also false.