yes,the histogram equalization operation is idempotent
yes
a bar graph the bars are seperated a histogram the bars are not seperated
When you are unsure what to do with a large set of measurements presented in a table, you can use a Histogram to organize and display the data in a more user- friendly format. A Histogram will make it easy to see where the majority of values falls in a measurement scale, and how much variation there is. It is helpful to construct a Histogram when you want to do the following (Viewgraph 2): ! Sum m arize large data sets graphically. When you look at Viewgraph 6, you can see that a set of data presented in a table isn't easy to use. You can make it much easier to understand by summarizing it on a tally sheet (Viewgraph 7) and organizing it into a Histogram (Viewgraph 12). ! Com pare process results with specification lim its. If you add the process specification limits to your Histogram, you can determine quickly whether the current process was able to produce "good" products. Specification limits may take the form of length, weight, density, quantity of materials to be delivered, or whatever is important for the product of a given process. Viewgraph 14 shows a Histogram on which the specification limits, or "goalposts," have been superimposed. We'll look more closely at the implications of specification limits when we discuss Histogram interpretation later in this module. ! Com m unicate inform ation graphically. The team members can easily see the values which occur most frequently. When you use a Histogram to summarize large data sets, or to compare measurements to specification limits, you are employing a powerful tool for communicating information. ! Use a tool to assist in decision m aking. As you will see as we move along through this module, certain shapes, sizes, and the spread of data have meanings that can help you in investigating problems and making decisions. But always bear in mind that if the data you have in hand aren't recent, or you don't know how the data were collected, it's a waste of time trying to chart them. Measurements cannot be used for making decisions or predictions when they were produced by a process that is different from the current one, or were collected under unknown conditions.
What is a shape of a histogram?
yes,the histogram equalization operation is idempotent
yes
All that histogram equalization does is remap histogram components on the intensity scale. To obtain a uniform (­at) histogram would require in general that pixel intensities be actually redistributed so that there are L groups of n=L pixels with the same intensity, where L is the number of allowed discrete intensity levels and n is the total number of pixels in the input image. The histogram equalization method has no provisions for this type of (arti®cial) redistribution process.
histogram
a bar graph the bars are seperated a histogram the bars are not seperated
a bar graph the bars are seperated a histogram the bars are not seperated
Image Enhancement is trying to improvise the quality of image over received or initial image.It is a subjective process. Meaning it varies from person to person to what extent the quality has to be fined to. Techniques involved are- 1. POINT PROCESSING. A IMAGE NEGATION B LOG COMPRESSION C CONTRAST STRETCHING D GREY LEVEL SLICING(WITH OR W/O BACKGROUND CONSERVATION) E BIT PLANE SLICING 2. NEIGHBORHOOD PROCESSING A HISTOGRAM EQUALIZATION B HISTOGRAM SPECIFICATION
histogram
When you are unsure what to do with a large set of measurements presented in a table, you can use a Histogram to organize and display the data in a more user- friendly format. A Histogram will make it easy to see where the majority of values falls in a measurement scale, and how much variation there is. It is helpful to construct a Histogram when you want to do the following (Viewgraph 2): ! Sum m arize large data sets graphically. When you look at Viewgraph 6, you can see that a set of data presented in a table isn't easy to use. You can make it much easier to understand by summarizing it on a tally sheet (Viewgraph 7) and organizing it into a Histogram (Viewgraph 12). ! Com pare process results with specification lim its. If you add the process specification limits to your Histogram, you can determine quickly whether the current process was able to produce "good" products. Specification limits may take the form of length, weight, density, quantity of materials to be delivered, or whatever is important for the product of a given process. Viewgraph 14 shows a Histogram on which the specification limits, or "goalposts," have been superimposed. We'll look more closely at the implications of specification limits when we discuss Histogram interpretation later in this module. ! Com m unicate inform ation graphically. The team members can easily see the values which occur most frequently. When you use a Histogram to summarize large data sets, or to compare measurements to specification limits, you are employing a powerful tool for communicating information. ! Use a tool to assist in decision m aking. As you will see as we move along through this module, certain shapes, sizes, and the spread of data have meanings that can help you in investigating problems and making decisions. But always bear in mind that if the data you have in hand aren't recent, or you don't know how the data were collected, it's a waste of time trying to chart them. Measurements cannot be used for making decisions or predictions when they were produced by a process that is different from the current one, or were collected under unknown conditions.
What is a shape of a histogram?
Histogram is a noun.
The prefix of "histogram" is "histo-".