Normalization is being applied for the database to reduce redundancy as in case of first normal for remove the redundant data from rows and in 2nd normal form it removes the redundant data vertically and in 3rd normal form it looks for the redundant data and whether it is non transitively depend on the primary key or not in other words it is the technique of breaking down the complex table into understandable smaller one to improve the optimization of the database structure and data redundancy is the data organization issue that allows the unnecessary duplication of data within the database. For example the first normal form where there should be one key in every table to uniquely each row thus no rows should be repeated and each entry must contain a single value and not multiple values .for instance employee, employee name, telephone numbers.
Chat with our AI personalities
The purpose of normalizing data in DBMS is to reduce the data redundancy and increase the consistency of data. a) Partial dependency: non-prime attribute ( field) depends on other non-prime attributes b) Functional dependency c) Transitive dependency
Un-normalization of data will return the actual values of outcome, which is real value. Because we scale the data in normalization process.
Normalization is the process of efficiently organizing data in a database. There are two goals of the normalization process: eliminating redundant data (for example, storing the same data in more than one table) and ensuring data dependencies make sense (only storing related data in a table). Both of these are worthy goals as they reduce the amount of space a database consumes and ensure that data is logically stored.
one is a validation the other is redundancy clue is in the name
The purpose of normalization is to reduce the chances for anomalies to occur in a database. The Normalization also forces you to use a database in a Object orientated manner. (This is good of course.)