0

Search results

CMOS have max fan out capacity.

1 answer


It depends on the specification of the PLC. One with a fanout of 10 into a standard TTL load can sink 16 milliamps and source 4 milliamps.

1 answer


Fan-out is a messaging pattern used to model an information exchange that implies the delivery of a message to one or multiple destinations possibly in parallel and not halting the process that executes the messaging to wait for any response to that message. It is ultimately determined by the maximum source and sink currents of an output and the maximum source and sink currents of the connected inputs.

networkrepairs.ca

1 answer


No. In the general case, a buffer amplifier is an analog device, but an AND or an OR gate is a digital device. Even in the specific case of a digital buffer amplifier, its still not the same because the digital buffer amplifier has more power available in its output circuit, giving it a higher fanout than just an ordinary AND or OR gate.

1 answer


Still have questions?
magnify glass
imp

Yes, standard 5V powered DTL and TTL devices are fully input/output logic level and fanout compatible. However DTL chips are nearly impossible to find today. The only thing to be careful about is old DTL based designs often used wired-and gates (i.e. directly tying outputs of several gates together to reduce part count). You cannot do this with normal TTL!

1 answer


Most control signals in electronics are active-low signals (usually reset lines, chip select lines and so on). This stems from the fact that most logic families can sink more current than they can source, so fanout and noise immunity increase. (The reason for this is ultimately related to the fact that electrons are negatively charged.) It also allows for wired-OR logic if the logic gates are open-collector/open-drain with a pull-up resistor. Examples of this are the I²C bus and Controller Area Network (CAN).

2 answers


8086 has two ground pins because to make the pins count 40(even number(40) so that it fits perfectly in ic cabin). that's all there no specfic operation for the both grounds .both do same operation

7 answers


DC fan-outA perfect logic gate would have infinite input impedance and zero output impedance, allowing a gate output to drive any number of gate inputs. However, since real-world fabrication technologies exhibit less than perfect characteristics, a limit will be reached where a gate output cannot drive any morecurrent into subsequent gate inputs - attempting to do so causes the voltage to fall below the level defined for the logic level on that wire, causing errors.

The fan-out is simply the number of inputs that can be connected to an output before the current required by the inputs exceeds the current that can be delivered by the output while still maintaining correct logic levels. The current figures may be different for the logic zero and logic one states and in that case we must take the pair that give the lower fan-out. This can be expressed mathematically as

( is the floor function).

Going on these figures alone TTL logic gates are limited to perhaps 2 to 10, depending on the type of gate, while CMOS gates have DC fan-outs that are generally far higher than is likely to occur in practical circuits (e.g. using NXP Semiconductor specifications for their HEF4000 series CMOS chips at 25 °C and 15 V gives a fan-out of 34 thousand).

AC fan-outHowever, inputs of real gates have capacitance as well as resistance to the power supply rails. This capacitance will slow the output transition of the previous gate and hence increase its propagation delay. As a result, rather than a fixed fan-out the designer is faced with a trade off between fan-out and propagation delay (which affects the maximum speed of the overall system). This effect is less marked for TTL systems, which is one reason why they maintained a speed advantage over CMOS for many years.

Dynamic or AC fan-out, not DC fan-out, is therefore the primary limiting factor in many practical cases, due to the speed limitation. For example, suppose a microcontroller has 3 devices on its address and data lines, and the microcontroller can drive 35 pF of bus capacitance at its maximum clock speed. If each device has 8 pF of input capacitance, then only 11 pF of trace capacitance is allowable. (Routing traces on printed circuit boards usually have 1-2 pF per inch so the traces can be 5.5 inches long max.) If this trace length condition can't be met, then the microcontroller must be run at a slower bus speed for reliable operation, or a buffer chip with higher current drive must be added. Higher current drive increases speed since I= C*dV/dt; more simply, current is rate of flow of charge, so increased current charges the capacitance faster, and the voltage across a capacitor is equal to the charge on it times the capacitance. So with more current, voltage changes faster, which allows faster signalling over the bus.

Unfortunately, due to the higher speeds of modern devices, IBIS simulation may be required for exact determination of the dynamic fan-out since dynamic fan-out is not clearly defined in most datasheets.

1 answer


Step 1: Prepare an Requirement Specification

Step 2: Create an Micro-Architecture Document.

Step 3: RTL Design & Development of IP's

Step 4: Functional verification all the IP's/Check whether the RTL is free from Linting Errors/Analyze whether the RTL is Synthesis friendly.

Step 4a: Perform Cycle-based verification(Functional) to verify the protocol behaviour of the RTL

Step 4b: Perform Property Checking , to verify the RTL implementation and the specification understanding is matching.

Step 5: Prepare the Design Constraints file (clock definitions(frequency/uncertainity/jitter),I/O delay definitions, Output pad load definition, Design False/Multicycle-paths) to perform Synthesis, usually called as an SDC file(Synopsys constraint file, specific to synopsys synthesis Tool (design-compiler)

Step 6: To Perform Synthesis for the IP, the inputs to the tool are (library file(for which synthesis needs to be targeted for, which has the functional/timing information available for the standard-cell library and the wire-load models for the wires based on the fanout length of the connectivity), RTL files and the Design Constraint files, So that the Synthesis tool can perform the synthesis of the RTL files and map and optimize to meet the design-constraints requirements. After performing synthesis, as a part of the synthesis flow, need to build scan-chain connectivity based on the DFT(Design for Test) requirement, the synthesis tool (Test-compiler), builds the scan-chain.

7: Check whether the Design is meeting the requirements (Functional/Timing/Area/Power/DFT) after synthesis.

Step 7a: Perform the Netlist-level Power Analysis, to know whether the design is meeting the power targets.

Step 7b: Perform Gate-level Simulation with the Synthesized Netlist to check whether the design is meeting the functional requirements.

Step 7c: Perform Formal-verification between RTL vs Synthesized Netlist to confirm that the synthesis Tool has not altered the functionality.

Step 7d: Perform STA(Static Timing Analysis) with the SDF(Standard Delay Format) file and synthesized netlist file, to check whether the Design is meeting the timing-requirements.

Step 7e: Perform Scan-Tracing , in the DFT tool, to check whether the scan-chain is built based on the DFT requirement.

Step 8: Once the synthesis is performed the synthesized netlist file(VHDL/Verilog format) and the SDC (constraints file) is passed as input files to the Placement and Routing Tool to perform the back-end Actitivities.

Step 9: The next step is the Floor-planning, which means placing the IP's based on the connectivity,placing the memories, Create the Pad-ring, placing the Pads(Signal/power/transfer-cells(to switch voltage domains/Corner pads(proper accessibility for Package routing), meeting the SSN requirements(Simultaneous Switching Noise) that when the high-speed bus is switching that it doesn't create any noise related acitivities, creating an optimised floorplan, where the design meets the utilization targets of the chip.

Step 9a : Release the floor-planned information to the package team, to perform the package feasibility analysis for the pad-ring .

Step 9b: To the placement tool, rows are cut, blockages are created where the tool is prevented from placing the cells, then the physical placement of the cells is performed based on the timing/area requirements.The power-grid is built to meet the power-target's of the Chip .

Step 10: The next step is to perform the Routing., at first the Global routing and Detailed routing, meeting the DRC(Design Rule Check) requirement as per the fabrication requirement.

Step 11: After performing Routing then the routed Verilog netlist, standard-cells LEF/DEF file is taken to the Extraction tool (to extract the parasitics(RLC) values of the chip in the SPEF format(Standard parasitics Exchange Format), and the SPEF file is generated.

Step 12: Check whether the Design is meeting the requirements (Functional/Timing/Area/Power/DFT/DRC/LVS/ERC/ESD/SI/IR-Drop) after Placement and Routing step.

Step 12a: Perform the Routed Netlist-level Power Analysis, to know whether the design has met the power targets.

Step 12b: Perform Gate-level Simulation with the routed Netlist to check whether the design is meeting the functional requirement .

Step 12c: Perform Formal-verification between RTL vs routed Netlist to confirm that the place & route Tool has not altered the functionality.

Step 12d: Perform STA(Static Timing Analysis) with the SPEF file and routed netlist file, to check whether the Design is meeting the timing-requirements.

Step 12e: Perform Scan-Tracing , in the DFT tool, to check whether the scan-chain is built based on the DFT requirement, Peform the Fault-coverage with the DFT tool and Generate the ATPG test-vectors.

Step 12f: Convert the ATPG test-vector to a tester understandable format(WGL)

Step 12g: Perform DRC(Design Rule Check) verfication called as Physical-verification, to confirm that the design is meeting the Fabrication requirements.

Step 12h: Perform LVS(layout vs Spice) check, a part of the verification which takes a routed netlist converts to spice (call it SPICE-R) and convert the Synthesized netlist(call it SPICE-S) and compare that the two are matching.

Step 12i : Perform the ERC(Electrical Rule Checking) check, to know that the design is meeting the ERC requirement.

Step 12j: Perform the ESD Check, so that the proper back-to-back diodes are placed and proper guarding is there in case if we have both analog and digital portions in our Chip. We have separate Power and Grounds for both Digital and Analog Portions, to reduce the Substrate-noise.

Step 12k: Perform separate STA(Static Timing Analysis) , to verify that the Signal-integrity of our Chip. To perform this to the STA tool, the routed netlist and SPEF file(parasitics including coupling capacitances values), are fed to the tool. This check is important as the signal-integrity effect can cause cross-talk delay and cross-talk noise effects, and hinder in the functionality/timing aspects of the design.

Step 12l: Perform IR Drop analysis, that the Power-grid is so robust enough to with-stand the static and dynamic power-drops with in the design and the IR-drop is with-in the target limits.

Step 13: Once the routed design is verified for the design constraints, then now the next step is chip-finishing activities (like metal-slotting, placing de-coupling caps).

Step 14: Now the Chip Design is ready to go to the Fabrication unit, release files which the fab can understand, GDS file.

Step 15: After the GDS file is released , perform the LAPO check so that the database released to the fab is correct.

Step 16: Perform the Package wire-bonding, which connects the chip to the Package.

1 answer


step 1: prepare the requirement specification or product specification

Step 2: Create an Micro-Architecture Document.

Step 3: RTL Design & Development of IP's

Step 4: Functional verification all the IP's/Check whether the RTL is free from Linting Errors/Analyze whether the RTL is Synthesis friendly.

Step 4a: Perform Cycle-based verification(Functional) to verify the protocol behaviour of the RTL

Step 4b: Perform Property Checking , to verify the RTL implementation and the specification understanding is matching.

Step 5: Prepare the Design Constraints file (clock definitions(frequency/uncertainity/jitter),I/O delay definitions, Output pad load definition, Design False/Multicycle-paths) to perform Synthesis, usually called as an SDC synopsys_constraints, specific to synopsys synthesis Tool (design-compiler)

Step 6: To Perform Synthesis for the IP, the inputs to the tool are (library file(for which synthesis needs to be targeted for, which has the functional/timing information available for the standard-cell library and the wire-load models for the wires based on the fanout length of the connectivity), RTL files and the Design Constraint files, So that the Synthesis tool can perform the synthesis of the RTL files and map and optimize to meet the design-constraints requirements. After performing synthesis, as a part of the synthesis flow, need to build scan-chain connectivity based on the DFT(Design for Test) requirement, the synthesis tool (Test-compiler), builds the scan-chain.

7: Check whether the Design is meeting the requirements (Functional/Timing/Area/Power/DFT) after synthesis.

Step 7a: Perform the Netlist-level Power Analysis, to know whether the design is meeting the power targets.

Step 7b: Perform Gate-level Simulation with the Synthesized Netlist to check whether the design is meeting the functional requirements.

Step 7c: Perform Formal-verification between RTL vs Synthesized Netlist to confirm that the synthesis Tool has not altered the functionality.

Step 7d: Perform STA(Static Timing Analysis) with the SDF(Standard Delay Format) file and synthesized netlist file, to check whether the Design is meeting the timing-requirements.

Step 7e: Perform Scan-Tracing , in the DFT tool, to check whether the scan-chain is built based on the DFT requirement.

Step 8: Once the synthesis is performed the synthesized netlist file(VHDL/Verilog format) and the SDC (constraints file) is passed as input files to the Placement and Routing Tool to perform the back-end Actitivities.

Step 9: The next step is the Floor-planning, which means placing the IP's based on the connectivity,placing the memories, Create the Pad-ring, placing the Pads(Signal/power/transfer-cells(to switch voltage domains/Corner pads(proper accessibility for Package routing), meeting the SSN requirements(Simultaneous Switching Noise) that when the high-speed bus is switching that it doesn't create any noise related acitivities, creating an optimised floorplan, where the design meets the utilization targets of the chip.

Step 9a : Release the floor-planned information to the package team, to perform the package feasibility analysis for the pad-ring .

Step 9b: To the placement tool, rows are cut, blockages are created where the tool is prevented from placing the cells, then the physical placement of the cells is performed based on the timing/area requirements.The power-grid is built to meet the power-target's of the Chip .

Step 10: The next step is to perform the Routing., at first the Global routing and Detailed routing, meeting the DRC(Design Rule Check) requirement as per the fabrication requirement.

Step 11: After performing Routing then the routed Verilog netlist, standard-cells LEF/DEF file is taken to the Extraction tool (to extract the parasitics(RLC) values of the chip in the SPEF format(Standard parasitics Exchange Format), and the SPEF file is generated.

Step 12: Check whether the Design is meeting the requirements (Functional/Timing/Area/Power/DFT/DRC/LVS/ERC/ESD/SI/IR-Drop) after Placement and Routing step.

Step 12a: Perform the Routed Netlist-level Power Analysis, to know whether the design has met the power targets.

Step 12b: Perform Gate-level Simulation with the routed Netlist to check whether the design is meeting the functional requirement .

Step 12c: Perform Formal-verification between RTL vs routed Netlist to confirm that the place & route Tool has not altered the functionality.

Step 12d: Perform STA(Static Timing Analysis) with the SPEF file and routed netlist file, to check whether the Design is meeting the timing-requirements.

Step 12e: Perform Scan-Tracing , in the DFT tool, to check whether the scan-chain is built based on the DFT requirement, Peform the Fault-coverage with the DFT tool and Generate the ATPG test-vectors.

Step 12f: Convert the ATPG test-vector to a tester understandable format(WGL)

Step 12g: Perform DRC(Design Rule Check) verfication called as Physical-verification, to confirm that the design is meeting the Fabrication requirements.

Step 12h: Perform LVS(layout vs Spice) check, a part of the verification which takes a routed netlist converts to spice (call it SPICE-R) and convert the Synthesized netlist(call it SPICE-S) and compare that the two are matching.

Step 12i : Perform the ERC(Electrical Rule Checking) check, to know that the design is meeting the ERC requirement.

Step 12j: Perform the ESD Check, so that the proper back-to-back diodes are placed and proper guarding is there in case if we have both analog and digital portions in our Chip. We have separate Power and Grounds for both Digital and Analog Portions, to reduce the Substrate-noise.

Step 12k: Perform separate STA(Static Timing Analysis) , to verify that the Signal-integrity of our Chip. To perform this to the STA tool, the routed netlist and SPEF file(parasitics including coupling capacitances values), are fed to the tool. This check is important as the signal-integrity effect can cause cross-talk delay and cross-talk noise effects, and hinder in the functionality/timing aspects of the design.

Step 12l: Perform IR Drop analysis, that the Power-grid is so robust enough to with-stand the static and dynamic power-drops with in the design and the IR-drop is with-in the target limits.

Step 13: Once the routed design is verified for the design constraints, then now the next step is chip-finishing activities (like metal-slotting, placing de-coupling caps).

Step 14: Now the Chip Design is ready to go to the Fabrication unit, release files which the fab can understand, GDS file.

Step 15: After the GDS file is released , perform the LAPO check so that the database released to the fab is correct.

Step 16: Perform the Package wire-bonding, which connects the chip to the Package.

1 answer