answersLogoWhite

0


Best Answer

The mechanical advantage is less than that given by a formula due to additional outside forces. This can include things like temperature which are difficult to predict or incorporate.

User Avatar

Wiki User

10y ago
This answer is:
User Avatar
More answers
User Avatar

AnswerBot

1mo ago

The mechanical advantage may be less than that calculated by the formula due to factors such as friction, efficiency losses, or flex in the system. Real-world conditions can impact the actual mechanical advantage achieved in a system.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Why is the mechanical advantage less than that by the given formula?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

How do you find the mechanical advantage of a ramp?

The mechanical advantage of a ramp is calculated by dividing the length of the ramp by the vertical rise. This ratio represents how much less force is required to move an object up the ramp compared to lifting it straight up. The formula for mechanical advantage of a ramp is: Mechanical Advantage = Length of ramp / Vertical rise.


What is true about the mechanical advantage of a machine a it increases with greater friction b it decreases as the input distance increases c it is less than the idle mechanical advantage?

c) It is less than the idle mechanical advantage. The actual mechanical advantage of a machine is always less than the ideal mechanical advantage due to factors like friction and energy losses in the system.


For a given machine explain why the MA is usually less than the IMA?

The mechanical advantage (MA) is usually less than the ideal mechanical advantage (IMA) for a machine due to factors such as friction, inefficiencies in the machine's design, and energy losses through heat or sound. These factors cause the input work to be greater than the output work, resulting in a lower actual mechanical advantage compared to the ideal mechanical advantage.


How does the length affect the mechanical advantage?

The length of a lever arm affects mechanical advantage by changing the distance between the input and output forces. A longer lever arm provides a greater leverage advantage, making it easier to lift heavier loads with less force. This relationship is described by the formula: mechanical advantage = length of effort arm / length of resistance arm.


How does the ideal compare with the actual mechanical advantage?

The ideal mechanical advantage is based on the geometric relationships of a machine's components and assumes no energy losses, while the actual mechanical advantage accounts for friction, inefficiencies, and other factors that can reduce the output compared to the input force. In reality, the actual mechanical advantage is always less than the ideal mechanical advantage due to these energy losses.

Related questions

How does actual mechanical advantage compare with ideal mechanical advantage?

The actual mechanical advantage is usually less, due to losses.


What is true about the mechanical advantage of a machine?

it is less than the ideal mechanical advantage


How do you find the mechanical advantage of a ramp?

The mechanical advantage of a ramp is calculated by dividing the length of the ramp by the vertical rise. This ratio represents how much less force is required to move an object up the ramp compared to lifting it straight up. The formula for mechanical advantage of a ramp is: Mechanical Advantage = Length of ramp / Vertical rise.


What is true about the mechanical advantage of a machine a it increases with greater friction b it decreases as the input distance increases c it is less than the idle mechanical advantage?

c) It is less than the idle mechanical advantage. The actual mechanical advantage of a machine is always less than the ideal mechanical advantage due to factors like friction and energy losses in the system.


For a given machine explain why the MA is usually less than the IMA?

The mechanical advantage (MA) is usually less than the ideal mechanical advantage (IMA) for a machine due to factors such as friction, inefficiencies in the machine's design, and energy losses through heat or sound. These factors cause the input work to be greater than the output work, resulting in a lower actual mechanical advantage compared to the ideal mechanical advantage.


Can a inclined plane have a mechanical advantage of less than 1?

The mechanical advantage of an inclined plane is equal to length divided by height (l/h). Therefore, if the length is less than than the height, the mechanical advantage would be less than one.


If the input force is less than the input force of a simple machine the mechanical advantage is less than one?

it means the mechanical advantage is greater.


If the output force is less than the input force of a simple machine the mechanical advantage less than one?

it means the mechanical advantage is greater.


How does the length affect the mechanical advantage?

The length of a lever arm affects mechanical advantage by changing the distance between the input and output forces. A longer lever arm provides a greater leverage advantage, making it easier to lift heavier loads with less force. This relationship is described by the formula: mechanical advantage = length of effort arm / length of resistance arm.


Why are third class levers used if their mechanical advantage is less that one?

Mechanical advantage is not the only reason to use levers.


How does the ideal compare with the actual mechanical advantage?

The ideal mechanical advantage is based on the geometric relationships of a machine's components and assumes no energy losses, while the actual mechanical advantage accounts for friction, inefficiencies, and other factors that can reduce the output compared to the input force. In reality, the actual mechanical advantage is always less than the ideal mechanical advantage due to these energy losses.


Do all levers have a mechanical advantage?

No, not all levers have a mechanical advantage. The mechanical advantage of a lever depends on the specific positions of the effort, load, and fulcrum. Some levers may have a mechanical advantage of less than 1, resulting in a decrease in force but an increase in distance.