Phosphor-bronze wire is used in moving coil galvanometers because it possesses high tensile strength and flexibility, allowing it to withstand the repetitive motion of the coil without breaking. Additionally, phosphor-bronze has good electrical conductivity, making it suitable for use in measuring electrical currents in galvanometers.
Some disadvantages of a moving coil galvanometer include its limited range of measurement due to its delicate construction, susceptibility to external magnetic fields which can affect accuracy, and the need for calibration to ensure reliable readings. Additionally, the moving coil galvanometer may have a slow response time compared to other types of meters.
A cylindrical core of soft iron is used in a moving coil galvanometer because soft iron has high magnetic permeability, meaning it enhances the magnetic field produced by the coil. This helps increase the sensitivity and responsiveness of the galvanometer to small currents passing through the coil.
A weston galvanometer is a type of sensitive instrument used to detect and measure small electric currents. It uses a moving coil suspended in a magnetic field to deflect in response to the current passing through it. This deflection is then used to indicate the strength of the current.
Copper is used in moving coil galvanometers because it is a good conductor of electricity, which allows for minimal resistance and efficient flow of currents. Additionally, copper is flexible and ductile, making it ideal for winding into a coil to create the moving part of the galvanometer.
A moving coil galvanometer is sensitive and accurately measures small currents due to the rotation of a coil in a magnetic field, producing a deflection proportional to the current. It is preferred for measuring small currents because of its high sensitivity and low electrical resistance.
What is the difference between the construction of a moving coil galvanometer and a ballistic galvanometer?
A moving coil Galvanometer consists of a coil PQRS which is wound over a non metalic frame having soft iron core in the middle. This Coil Is suspended in b/w a powerful magnet poles N-S with the help of Phosphor Bronze wire. Concave mirror is fixed on d suspending thread upside the coil through which deflection can b noted by Lamp and Scale arrangement. The lower end of the coil is connected by hair spring.
a series resistence with its coil
Some disadvantages of a moving coil galvanometer include its limited range of measurement due to its delicate construction, susceptibility to external magnetic fields which can affect accuracy, and the need for calibration to ensure reliable readings. Additionally, the moving coil galvanometer may have a slow response time compared to other types of meters.
it will not work
A cylindrical core of soft iron is used in a moving coil galvanometer because soft iron has high magnetic permeability, meaning it enhances the magnetic field produced by the coil. This helps increase the sensitivity and responsiveness of the galvanometer to small currents passing through the coil.
A weston galvanometer is a type of sensitive instrument used to detect and measure small electric currents. It uses a moving coil suspended in a magnetic field to deflect in response to the current passing through it. This deflection is then used to indicate the strength of the current.
A moving coil galvanometer is a type of scanning device used in the transportation and trucking industry. The vehicle is pulled through a fixed scanner while an operator watches a closed circuit television.
Copper is used in moving coil galvanometers because it is a good conductor of electricity, which allows for minimal resistance and efficient flow of currents. Additionally, copper is flexible and ductile, making it ideal for winding into a coil to create the moving part of the galvanometer.
A moving coil galvanometer is sensitive and accurately measures small currents due to the rotation of a coil in a magnetic field, producing a deflection proportional to the current. It is preferred for measuring small currents because of its high sensitivity and low electrical resistance.
Having a controlling couple in a moving coil galvanometer is essential to ensure the coil comes back to its original position after deflection. This controlling couple helps to stabilize the movement of the coil and maintain the accuracy of the measurements taken by the galvanometer. Without it, the coil may continue to oscillate or not return to its resting position, leading to inaccurate readings.
The merits of a moving coil galvanometer include high sensitivity, accuracy, and ability to measure small currents. However, its demerits include limited range of measurements, susceptibility to external magnetic fields, and fragility of the moving parts.