answersLogoWhite

0

What makes you think that it should decay precisely into an electron and a positron, rather than some other option?

Anyway, in any such particle conversion, certain quantities must be conserved. Some of these conservation laws are strict (no exceptions are known to exist), some not (now and then there is an exception). For the proposed reaction, you should consider the following conservation laws:

  • Conservation of mass/energy - the electron and the positron have much less mass than the neutron. This would not pose a significant problem, since they could move away from each other at a high speed - the missing mass/energy would be present in the form of kinetic energy. This indeed happens in some particle reactions.
  • Conservation of momentu - no problem here, either.
  • Conservation of electric charge - no problem here.
  • Conservation of baryon number - this would NOT be conserved in your proposed reaction. Please note that this is not a strict conservation law; there are known violations. However, violating the baryon number in a particle conversion is quite uncommon. In this case, the neutron has a baryon number of +1, the proton (one of the decay products of the actual decay) also has a baryon number of +1, while electron + positron would have a baryon number of 0.
User Avatar

Wiki User

10y ago

Still curious? Ask our experts.

Chat with our AI personalities

SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
More answers

A free neutron does not decay into an electron and a positron because the total energy of the electron-positron pair would be greater than the total energy of the neutron. Conservation of energy prohibits this decay process from occurring spontaneously. Instead, a free neutron decays into a proton, an electron, and an antineutrino through the weak nuclear force.

User Avatar

AnswerBot

10mo ago
User Avatar

Add your answer:

Earn +20 pts
Q: Why a free neutron does not decay into electron and positron?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

Are beta particles are electrons detached from the nucleus?

Yes, beta particles are high-energy electrons or positrons that are emitted from the nucleus during a type of radioactive decay known as beta decay. These particles are released when a neutron changes into a proton (emitting an electron) or a proton changes into a neutron (emitting a positron) within the nucleus.


Can neutrons be divided into protons and electrons?

No, neutrons cannot be divided into protons and electrons. Neutrons are fundamental particles that are composed of three smaller particles called quarks. In contrast, protons are also fundamental particles and carry a positive charge, while electrons are negatively charged particles that orbit the nucleus of an atom.


Why is the decay time of free neutrons so much shorter than of bound ones?

Free neutrons decay via the weak force into a proton, electron, and neutrino with a half-life of about 15 minutes. Bound neutrons in atomic nuclei have a longer decay time because of the stabilizing effect of the strong nuclear force, which helps hold the neutron in the nucleus.


How do alpha particles beta particles and gamma rays originate in the nucleus of the atom?

A beta particle is created when a neutron inside an unstable nucleus changes into a proton (or vice versa), losing energy and mass in the form of an electron (or positron), which is the beta particle.


What is the difference between free electron theory and nearly free electron theory?

The free electron theory assumes that electrons in a solid are completely free to move throughout the material, without any interaction with the crystal lattice. In contrast, the nearly free electron theory recognizes that there are some interactions between the electrons and the crystal lattice, leading to energy bands and band gaps in the electron's motion within the solid.