answersLogoWhite

0


Best Answer
  1. The vacuum layer between the inner and outer walls of the flask prevents conduction of heat as there are no particles or molecules to transfer heat.
  2. The reflective surface coating on the inner wall of the flask helps to minimize heat transfer by reflecting heat back towards the liquid inside the flask.
User Avatar

AnswerBot

5mo ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What two features of a vacuum flask help reduce heat loss by conduction?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

Vacuum is mantained in thermos flask?

A vacuum is maintained in a thermos flask in order to prevent heat transfer by conduction and convection. The absence of air molecules in the vacuum reduces the amount of heat that can be transferred through these processes, helping to keep the contents of the flask hot or cold for longer periods of time.


How does a vacuum flask reduce heat transfer by conduction?

A vacuum flask reduces heat transfer by conduction by having an airless space between two layers of glass. Since air is a poor conductor of heat, this design minimizes heat transfer through conduction. Additionally, the reflective surface on the inner wall of the flask reduces heat transfer by radiation.


How does a thermos flask reduce conduction?

A thermos flask reduces conduction by having a vacuum-sealed space between the inner and outer layers of the flask. This vacuum eliminates air, which is a poor conductor of heat, preventing heat loss or gain through conduction. Additionally, the inner walls of the flask are often coated with a reflective material to further minimize heat transfer by radiation.


How does a flask reduce heat loss by conduction and radiation?

A vacuum-insulated flask reduces heat loss by conduction by having a vacuum layer between its inner and outer walls, which inhibits the transfer of heat through the air. Furthermore, the reflective surfaces on the inner walls of the flask minimize heat loss by radiation by reflecting radiant heat back into the flask.


How does a vacuum flask reduce heat transfer?

A vacuum flask reduces heat transfer by creating a vacuum between two layers of insulated material, which minimizes conduction and convection. Additionally, the reflective lining inside the flask helps to reduce radiation heat transfer. This combination of insulated layers and reflective lining helps to maintain the temperature of the liquid inside the flask for a longer period of time.

Related questions

Vacuum is mantained in thermos flask?

A vacuum is maintained in a thermos flask in order to prevent heat transfer by conduction and convection. The absence of air molecules in the vacuum reduces the amount of heat that can be transferred through these processes, helping to keep the contents of the flask hot or cold for longer periods of time.


How does a vacuum flask reduce heat transfer by conduction?

A vacuum flask reduces heat transfer by conduction by having an airless space between two layers of glass. Since air is a poor conductor of heat, this design minimizes heat transfer through conduction. Additionally, the reflective surface on the inner wall of the flask reduces heat transfer by radiation.


How does a thermos flask reduce conduction?

A thermos flask reduces conduction by having a vacuum-sealed space between the inner and outer layers of the flask. This vacuum eliminates air, which is a poor conductor of heat, preventing heat loss or gain through conduction. Additionally, the inner walls of the flask are often coated with a reflective material to further minimize heat transfer by radiation.


How does a flask reduce heat loss by conduction and radiation?

A vacuum-insulated flask reduces heat loss by conduction by having a vacuum layer between its inner and outer walls, which inhibits the transfer of heat through the air. Furthermore, the reflective surfaces on the inner walls of the flask minimize heat loss by radiation by reflecting radiant heat back into the flask.


How does a vacuum flask reduce heat transfer?

A vacuum flask reduces heat transfer by creating a vacuum between two layers of insulated material, which minimizes conduction and convection. Additionally, the reflective lining inside the flask helps to reduce radiation heat transfer. This combination of insulated layers and reflective lining helps to maintain the temperature of the liquid inside the flask for a longer period of time.


What the conduction in thermos flask?

Conduction in a thermos flask is minimized through the use of a vacuum layer between two walls of the flask. This vacuum layer prevents heat transfer by conduction, as there are no molecules present to transfer the heat. This helps to keep the contents of the flask hot or cold for an extended period of time.


How does a thermos flask reduce heat loss by conduction?

A thermos flask reduces heat loss by conduction through the use of a vacuum between its inner and outer walls. The vacuum acts as an insulator, preventing heat from transferring through conduction. Additionally, the inner walls are usually made of a reflective material to minimize heat loss via radiation.


How does a vacuum flask reduce the rate of energy transfers?

A vacuum flask reduces the rate of energy transfers by using a vacuum between two walls to minimize heat conduction, which prevents heat from entering or escaping the flask. Additionally, the inner wall is coated with a reflective material to minimize heat radiation, further reducing energy transfer.


How does a vacuum flask keep things cold?

A vacuum flask keeps things cold by using a vacuum layer between the inner and outer walls of the flask to reduce heat transfer through conduction and convection. This prevents outside heat from reaching the contents inside, helping to maintain their temperature for a longer period of time.


Why does a thermos flask have silvered glass and a vacuum?

A thermos flask has silvered glass to reduce heat transfer through radiation. The vacuum insulation minimizes heat transfer through conduction and convection, keeping the contents of the flask hot or cold for longer periods by preventing heat exchange with the surroundings.


Which form of heat transfer is reduced by the use of vacuum inside a vacuum flask?

The vacuum reduces both conduction and convection.


How does a vaacum flask stop conduction?

A vacuum flask stops conduction by creating a vacuum layer between its inner and outer walls. Since air is a poor conductor of heat, the absence of air molecules inside the flask prevents heat transfer by conduction, helping to maintain the temperature of the contents for longer periods of time.