Force = mass * acceleration or F = ma.
Chat with our AI personalities
Force is directly proportional to mass and acceleration according to Newton's second law of motion (F = ma). This means that the greater the mass of an object, the greater the force needed to accelerate it. In general, force is what causes a mass to accelerate and move.
The relationship between mass and force is described by Newton's second law of motion, which states that force is equal to mass multiplied by acceleration. In simpler terms, the greater the mass of an object, the more force is needed to accelerate it.
The relationship between force and mass is described by Newton's second law of motion, which states that the force acting on an object is equal to the mass of the object multiplied by its acceleration. In simpler terms, the greater the mass of an object, the more force is needed to accelerate it.
In uniform circular motion, the relationship between force and mass is described by the equation F m a, where F is the force acting on an object, m is the mass of the object, and a is the acceleration of the object. This equation shows that the force required to keep an object moving in a circular path is directly proportional to the mass of the object.
In physics, the relationship between mass and force is described by Newton's second law of motion. This law states that the force acting on an object is equal to the mass of the object multiplied by its acceleration. In simpler terms, the greater the mass of an object, the more force is needed to accelerate it.
The relationship between force, mass, and acceleration affects the motion of an object through Newton's second law of motion. This law states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. In simpler terms, the more force applied to an object, the greater its acceleration will be, and the heavier the object, the slower it will accelerate for a given force.