The permittivity of free space, denoted by ε₀, is a physical constant that represents the ability of a material to store electrical energy in an electric field. It is related to the Coulomb's constant k (also known as electrostatic constant) by the equation k = 1 / (4πε₀), where k is a proportionality constant in Coulomb's law.
Chat with our AI personalities
The relationship between the electric field intensity (E), charge density (q), and permittivity of free space () is given by the equation E q / (). This equation shows that the electric field intensity is directly proportional to the charge density and inversely proportional to the permittivity of free space.
The relationship between the electric field (E), permittivity of free space (), and electric charge density () in a given system is described by Gauss's Law, which states that the electric field (E) at a point in space is directly proportional to the electric charge density () at that point and inversely proportional to the permittivity of free space (). Mathematically, this relationship is represented as E / .
Epsilon naught (ε₀) is the vacuum permittivity constant, representing the electric permittivity of free space. It has a value of approximately 8.85 x 10^(-12) farads per meter.
The unit for permittivity of free space is farads per meter (F/m). It is denoted by the symbol ε0 and represents the ability of a vacuum to permit the transmission of electric field lines.
The capacitance between two concentric spheres is determined by the radius of the spheres and the permittivity of the material between them. It can be calculated using the formula C 4rr / (r - r), where C is the capacitance, is the permittivity of free space, r is the radius of the inner sphere, and r is the radius of the outer sphere.