Compound pendulum is a physical pendulum whereas a simple pendulum is ideal pendulum. The difference is that in simple pendulum centre of mass and centre of oscillation are at the same distance.
A compound pendulum is called an equivalent simple pendulum because its motion can be approximated as that of a simple pendulum with the same period. This simplification allows for easier analysis and calculation of its behavior.
Compound pendulum is a physical pendulum whereas a simple pendulum is ideal pendulum. The difference is that in simple pendulum centre of mass and centre of oscillation are at the same distance.
The motion of a simple pendulum will be simple harmonic when the angle of displacement from the vertical is small (less than 10 degrees) and the amplitude is also small.
The time period of a simple pendulum is determined by the length of the pendulum, the acceleration due to gravity, and the angle at which the pendulum is released. The formula for the time period of a simple pendulum is T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.
Compound pendulum is a physical pendulum whereas a simple pendulum is ideal pendulum. The difference is that in simple pendulum centre of mass and centre of oscillation are at the same distance.
A compound pendulum is called an equivalent simple pendulum because its motion can be approximated as that of a simple pendulum with the same period. This simplification allows for easier analysis and calculation of its behavior.
A simple pendulum exhibits simple harmonic motion
A simple pendulum has one piece that swings. A complex pendulum has at least two swinging parts, attached end to end. A simple pendulum is extremely predictable, while a complex pendulum is virtually impossible to accurately predict.
The simple pendulum can be used to determine the acceleration due to gravity.
applications of simple pendulum
A simple pendulum.
Compound pendulum is a physical pendulum whereas a simple pendulum is ideal pendulum. The difference is that in simple pendulum centre of mass and centre of oscillation are at the same distance.
simple pendulum center of mass and center of oscillation are at the same distance.coupled pendulum is having two bobs attached with a spring.
The motion of a simple pendulum will be simple harmonic when the angle of displacement from the vertical is small (less than 10 degrees) and the amplitude is also small.
The time period of a simple pendulum is determined by the length of the pendulum, the acceleration due to gravity, and the angle at which the pendulum is released. The formula for the time period of a simple pendulum is T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.
No Time period, T = 2π √(l/g) π - pi l - lenght of the pendulum g - acceleration due to gravity at the place