The gravitational potential energy (GPE) of the ball is given by the formula GPE = mgh, where m is the mass of the ball (2 kg), g is the acceleration due to gravity (9.81 m/s^2), and h is the height above the floor. Without the height (h) above the floor provided, we cannot determine the exact GPE of the ball.
The gravitational potential energy (GPE) of the ball is given by the formula GPE = mgh, where m is the mass of the ball, g is the acceleration due to gravity (9.81 m/s^2), and h is the height above the reference point (the floor in this case). Plugging in the values, GPE = 2 kg * 9.81 m/s^2 * 5 m = 98.1 J.
When you kick a ball, the energy transfer that occurs is mechanical energy transfer. This involves the conversion of chemical energy stored in your muscles into kinetic energy in the ball when it moves. Additionally, some energy is lost as heat due to friction between your foot and the ground.
To convert gravitational potential energy (GPE) to joules, you can use the formula: GPE = mgh, where m is the mass in kilograms, g is the acceleration due to gravity in meters per second squared, and h is the height in meters. Calculate the GPE using this formula to get the energy in joules.
The two factors that affect how much gravitational potential energy (GPE) an object has are its mass and its height above the reference point where GPE is defined. The higher the object is positioned above the reference point and the greater its mass, the more GPE it will possess.
The gravitational potential energy (GPE) of the ball is given by the formula GPE = mgh, where m is the mass of the ball (2 kg), g is the acceleration due to gravity (9.81 m/s^2), and h is the height above the floor. Without the height (h) above the floor provided, we cannot determine the exact GPE of the ball.
The gravitational potential energy (GPE) of the ball is given by the formula GPE = mgh, where m is the mass of the ball, g is the acceleration due to gravity (9.81 m/s^2), and h is the height above the reference point (the floor in this case). Plugging in the values, GPE = 2 kg * 9.81 m/s^2 * 5 m = 98.1 J.
1
Four and half
GPE=weight x height
what is a gpe sentence mean and what kind of time will you get.
Height= GPE/gravitational constant(mass)
When you kick a ball, the energy transfer that occurs is mechanical energy transfer. This involves the conversion of chemical energy stored in your muscles into kinetic energy in the ball when it moves. Additionally, some energy is lost as heat due to friction between your foot and the ground.
No, GPE is only one of different forms of PE.
To convert gravitational potential energy (GPE) to joules, you can use the formula: GPE = mgh, where m is the mass in kilograms, g is the acceleration due to gravity in meters per second squared, and h is the height in meters. Calculate the GPE using this formula to get the energy in joules.
The two factors that affect how much gravitational potential energy (GPE) an object has are its mass and its height above the reference point where GPE is defined. The higher the object is positioned above the reference point and the greater its mass, the more GPE it will possess.
The variables that affect gravitational potential energy (GPE) include the mass of an object, the height at which the object is located, and the acceleration due to gravity at that location. GPE is given by the formula GPE = mgh, where m is the mass of the object, g is the acceleration due to gravity, and h is the height of the object.