When air inside a balloon is heated, the molecules move faster, causing the air to expand and the balloon to inflate. The total mass of the air inside the balloon remains the same, but the density of the air decreases as it becomes less compact.
When a balloon is heated, the air molecules inside the balloon gain kinetic energy and move faster, causing them to spread out and take up more space. This increase in volume leads to the balloon expanding.
When the gas in a balloon is heated, its temperature increases, causing the gas molecules to move faster and collide more frequently with the walls of the balloon. This increases the pressure inside the balloon, which causes the balloon to expand as it attempts to accommodate the increased volume of gas.
When the air inside a balloon is heated, its density decreases. This happens because the air molecules gain energy and move farther apart, resulting in a decrease in the air's density.
Nothing happens to the mass of the balloon. Mass is conserved, so the temperature of the balloon will not affect it's mass. Mass can be thought of the amount of "stuff" that makes up a balloon. It can be obtained by adding up the mass of all the molecules of rubber in the balloon. Obviously, putting the balloon in a warm room will not change the number of molecules in the balloon, therefore the mass stays constant. The volume of the balloon will probably increase. Because volume increases but mass remains constant, the density of the balloon would decrease. D = m/v
When air inside a balloon is heated, the molecules move faster, causing the air to expand and the balloon to inflate. The total mass of the air inside the balloon remains the same, but the density of the air decreases as it becomes less compact.
In a hot air balloon, the volume of the air inside the balloon increases as the air is heated. This causes the hot air balloon to become less dense than the surrounding air, which allows it to float. The mass of the air inside the balloon remains the same, but its density changes due to the temperature increase.
It is reduced by haft
When a balloon is heated, the air molecules inside the balloon gain kinetic energy and move faster, causing them to spread out and take up more space. This increase in volume leads to the balloon expanding.
The density decreases by half. You find the answer by knowing that density is equal to mass divided by the volume. If the mass stays constants and the volume is doubled, then the density is halved.
When a balloon is heated, the molecules inside gain kinetic energy and move faster. This causes the molecules to push against the walls of the balloon more vigorously, increasing the pressure inside the balloon. If the balloon is heated too much, it can expand or even burst due to the increased pressure.
When the gas in a balloon is heated, its temperature increases, causing the gas molecules to move faster and collide more frequently with the walls of the balloon. This increases the pressure inside the balloon, which causes the balloon to expand as it attempts to accommodate the increased volume of gas.
The density decreases by half. You find the answer by knowing that density is equal to mass divided by the volume. If the mass stays constants and the volume is doubled, then the density is halved.
The density decreases by half. You find the answer by knowing that density is equal to mass divided by the volume. If the mass stays constants and the volume is doubled, then the density is halved.
When the air inside a balloon is heated, its density decreases. This happens because the air molecules gain energy and move farther apart, resulting in a decrease in the air's density.
Nothing happens to the mass of the balloon. Mass is conserved, so the temperature of the balloon will not affect it's mass. Mass can be thought of the amount of "stuff" that makes up a balloon. It can be obtained by adding up the mass of all the molecules of rubber in the balloon. Obviously, putting the balloon in a warm room will not change the number of molecules in the balloon, therefore the mass stays constant. The volume of the balloon will probably increase. Because volume increases but mass remains constant, the density of the balloon would decrease. D = m/v
When a balloon is heated and its volume doubles, the density of the air inside the balloon decreases. This change in density causes the balloon to rise since it becomes less dense than the surrounding air. The balloon will continue to rise until the internal air reaches equilibrium with the external air.