The force that changes when the parachute opens is air resistance, also known as drag force. As the parachute opens, it increases the surface area exposed to the air, which increases the drag force acting on the parachute and slows down the descent of the object attached to the parachute.
When a skydiver opens their parachute, air resistance increases which slows down the skydiver. Terminal velocity is the maximum speed a falling object can reach when the force of gravity is balanced by the force of air resistance. Opening the parachute decreases the skydiver's speed, allowing them to land safely.
When a skydiver opens his parachute, air resistance (also known as drag force) increases. This is due to the parachute creating a larger surface area and creating more resistance against the air, which slows down the skydiver's fall. This increased air resistance counterbalances the force of gravity acting on the skydiver.
-- The force of gravity is unchanged before and after.-- The force of air resistance on the skydiver is greater before, and less after,because she is falling slower after the parachute opens.-- The effect on her of air resistance is greater after the parachute is open. Theincreased air resistance itself acts on the parachute, and its effect is transferredto the skydiver through her harness.
When a person opens a parachute, it creates drag or air resistance which slows down the descent rate. The larger the parachute, the more drag is created, and the slower the person falls. This helps to reduce the speed and control the descent for a safe landing.
The force that changes when the parachute opens is air resistance, also known as drag force. As the parachute opens, it increases the surface area exposed to the air, which increases the drag force acting on the parachute and slows down the descent of the object attached to the parachute.
The force that changes is air resistance and the force that stay the same is gravity.
-- The force of gravity is unchanged before and after.-- The force of air resistance on the skydiver is greater before, and less after,because she is falling slower after the parachute opens.-- The effect on her of air resistance is greater after the parachute is open. Theincreased air resistance itself acts on the parachute, and its effect is transferredto the skydiver through her harness.
When a skydiver opens their parachute, air resistance increases which slows down the skydiver. Terminal velocity is the maximum speed a falling object can reach when the force of gravity is balanced by the force of air resistance. Opening the parachute decreases the skydiver's speed, allowing them to land safely.
When a skydiver opens his parachute, air resistance (also known as drag force) increases. This is due to the parachute creating a larger surface area and creating more resistance against the air, which slows down the skydiver's fall. This increased air resistance counterbalances the force of gravity acting on the skydiver.
-- The force of gravity is unchanged before and after.-- The force of air resistance on the skydiver is greater before, and less after,because she is falling slower after the parachute opens.-- The effect on her of air resistance is greater after the parachute is open. Theincreased air resistance itself acts on the parachute, and its effect is transferredto the skydiver through her harness.
When a person opens a parachute, it creates drag or air resistance which slows down the descent rate. The larger the parachute, the more drag is created, and the slower the person falls. This helps to reduce the speed and control the descent for a safe landing.
A skydiver loses speed when he opens the parachute because the parachute creates drag by slowing down the movement of air. This drag force opposes the motion of the skydiver, causing a decrease in speed. Additionally, the larger surface area of the parachute increases the effect of air resistance on the skydiver's body.
Air resistance is useful in the design of parachutes as it helps slow down the descent of the parachute and the person attached to it. By creating drag as the parachute opens and fills with air, air resistance counteracts the force of gravity and allows for a safe and controlled descent.
A parachute works due to air resistance, which creates drag forces that slow down the falling object by pushing against the air. As the parachute opens and fills with air, the drag force increases, counteracting the force of gravity and allowing for a controlled descent.
A parachute is not uniformly accelerated because it experiences air resistance, which increases as the parachute opens and slows down the descent of the object. This non-uniform acceleration is caused by the changing forces acting on the parachute as it falls through the air.
A parachute works by increasing air resistance. When the parachute opens, it creates a large surface area that catches and slows down the air as the object falls. This increased air resistance reduces the speed at which the object falls, allowing it to descend more slowly and safely.