answersLogoWhite

0


Best Answer

As light passes from air into a glass prism, its velocity decreases due to the change in medium. The frequency of light remains the same as it is determined by the source of the light. The wavelength of light decreases as it enters the denser medium of the glass, causing the light to bend or refract.

User Avatar

AnswerBot

1mo ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What happen to the velocity frequency and wavelength of light as it leaves air and passes through a glass prism?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

If the frequency of a wave traveling in a rope is doubled what will happen to the speed of the wave?

If the frequency of a wave traveling in a rope is doubled, the speed of the wave will remain the same. The speed of a wave in a medium is determined by the properties of the medium, not by the frequency of the wave.


What will happen to the wavelength associated with a moving particle if its velocity is reduced to half?

If the velocity of a moving particle is reduced to half, the wavelength associated with it will remain the same. The wavelength of a particle is determined by its momentum, not its velocity.


When this happens when Velocity of a wave increases and the wavelength stays the same?

When the velocity of a wave increases while the wavelength remains the same, it means that the wave's frequency must also increase to maintain the relationship between velocity, frequency, and wavelength as per the formula v = fλ. In this scenario, the wave will oscillate more frequently as it travels, resulting in a greater number of wave crests passing a fixed point per unit of time.


What will happen to the wavelength of a wave if the frequency is left unchanged?

If the frequency of a wave is left unchanged, the wavelength will also remain constant. Wavelength and frequency are inversely proportional, so they always adjust together to maintain the speed of the wave.


What will happen to the wavelength if the frequency is decreased?

If the frequency is decreased, the wavelength will increase. This is because the wavelength and frequency of a wave are inversely proportional to each other according to the wave equation λ = c/f, where λ is the wavelength, c is the speed of light, and f is the frequency.

Related questions

Velocity of a wave increases and the wavelength stays the same. What will the result be when this happens?

Assuming an electromechanical wave not much. The speed of the wave depends on the medium that the wave is passing through. In a vacuum it is the speed of light, through something else a lesser speed. The wavelength stays the same and the frequency stays the same.


If the speed of a wave increases and its frequency does not change then what will happen to its wavelength?

This generally happens when a wave moves from one medium into another.Now, the velocity (v) of a wave (mechanical and electromagnetic) is equal to the product of its frequency (f) and wavelength (λ).So, v = f x λThat means if frequency is constant, the wavelength is directly proportional to the velocity.So, if the speed of the wave increases (while frequency remains the same), the wavelength will also increase.


If the frequency of a wave traveling in a rope is doubled what will happen to the speed of the wave?

If the frequency of a wave traveling in a rope is doubled, the speed of the wave will remain the same. The speed of a wave in a medium is determined by the properties of the medium, not by the frequency of the wave.


What will happen to the wavelength associated with a moving particle if its velocity is reduced to half?

If the velocity of a moving particle is reduced to half, the wavelength associated with it will remain the same. The wavelength of a particle is determined by its momentum, not its velocity.


How is the wavelength related to frequency for waves moving at a constant speed?

Whatever the wavelength and frequency happen to be, their product is always equal to the speed.


When this happens when Velocity of a wave increases and the wavelength stays the same?

When the velocity of a wave increases while the wavelength remains the same, it means that the wave's frequency must also increase to maintain the relationship between velocity, frequency, and wavelength as per the formula v = fλ. In this scenario, the wave will oscillate more frequently as it travels, resulting in a greater number of wave crests passing a fixed point per unit of time.


What happen to the speed when frequency and wavelength change?

It would change, depending on how much the frequency and the wavelength changes. It varies based on v = fλ.


What will happen to the wavelength of a wave if the frequency is left unchanged?

If the frequency of a wave is left unchanged, the wavelength will also remain constant. Wavelength and frequency are inversely proportional, so they always adjust together to maintain the speed of the wave.


What will happen to the wavelength if the frequency is decreased?

If the frequency is decreased, the wavelength will increase. This is because the wavelength and frequency of a wave are inversely proportional to each other according to the wave equation λ = c/f, where λ is the wavelength, c is the speed of light, and f is the frequency.


If a wave is moving at a constant speed and the wavelength is doubled what will happen to the frequency?

IF a wave moving at a constant speed were to have it's wavelength doubled (Wavelength x 2), then the frequency of the wave would be half of what it originally was (Frequency / 2).


What happen to wavelength when you vary amplitude?

Changing the amplitude of a wave does not affect its wavelength. Wavelength is the distance between corresponding points on a wave and is determined by the frequency of the wave and the speed at which it travels through a medium. Amplitude, on the other hand, represents the height of the wave and does not impact the wavelength.


What would happen to the wave length if you could increase the frequency of a periodic wave?

If you increase the frequency of a periodic wave, the wavelength would decrease. This is because wavelength and frequency are inversely proportional in a wave: as frequency goes up, wavelength goes down.