The formula to calculate gravitational potential energy is: GPE = mgh, where GPE is the gravitational potential energy, m is the mass of the object, g is the acceleration due to gravity (approximately 9.81 m/s² on Earth), and h is the height above the reference point.
Chat with our AI personalities
The potential energy voltage equation used to calculate the electrical potential energy stored in a system is given by the formula: Potential Energy Charge x Voltage.
The gravitational potential energy of an object can be calculated using the formula: GPE = mgh, where m is the mass of the object, g is the acceleration due to gravity, and h is the height of the object above a reference point. The gravitational potential energy represents the energy stored in an object due to its position in a gravitational field.
To calculate an object's gravitational potential energy, you need to know the object's mass, the acceleration due to gravity, and the height at which the object is located above a reference point. The formula for gravitational potential energy is U = mgh, where U is the potential energy, m is the mass of the object, g is the acceleration due to gravity, and h is the height of the object above the reference point.
The equation for gravitational potential energy is PE = mgh, where m is the mass of the object, g is the acceleration due to gravity, and h is the height or distance from a reference point. This equation represents the energy an object possesses due to its position in a gravitational field.
Gravitational potential energy gain can be calculated using the formula: PE = mgh, where m is the mass of the object, g is the acceleration due to gravity (approximately 9.81 m/s^2 on Earth), and h is the height the object is lifted to. Simply multiply the mass, gravitational acceleration, and height to determine the gravitational potential energy gain.