answersLogoWhite

0


Best Answer

The strength of the magnetic field around a conductor carrying current is determined by the amount of current flowing through the conductor. The greater the current, the stronger the magnetic field. Additionally, the shape and orientation of the conductor also play a role in determining the strength of the magnetic field.

User Avatar

AnswerBot

3mo ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What determines the strength of the magnetic field when current flows through a conducter?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

Why don't you look at the number of loops a solenoid has at a different time then the voltage in the strength of an electromagnet?

The number of loops in a solenoid determines its magnetic field strength, while the voltage determines the current passing through the solenoid. These two factors are independent of each other, so changing the number of loops will alter the magnetic field strength, and changing the voltage will affect the current and subsequently the magnetic field strength. Both factors play a key role in determining the overall strength of the electromagnet.


What determines the strength of a coil?

The strength of a coil is determined by factors such as the number of turns of wire, the type of material used, the diameter of the coil, and the current passing through it. Increasing the number of turns or the current will typically increase the strength of the magnetic field generated by the coil.


In an electromagnet as the electric current changes what happens to the magnetic field?

As the electric current changes in an electromagnet, the strength of the magnetic field also changes. An increase in current strength leads to a stronger magnetic field, while a decrease in current strength results in a weaker magnetic field. This ability to control the magnetic field strength makes electromagnets versatile in various applications.


How did the size of the current in the coil affect the strength of the elctromagnet?

The strength of an electromagnet is directly proportional to the current passing through the coil. Increasing the current will increase the strength of the magnetic field produced by the electromagnet, whereas decreasing the current will weaken the magnetic field.


What does the strength of the magnetic field surrounding a current carrying wire depend on?

The strength of the magnetic field surrounding a current-carrying wire depends on the magnitude of the current flowing through the wire. The magnetic field strength also depends on the distance from the wire, with the field becoming weaker as the distance increases. Additionally, the material surrounding the wire can affect the strength of the magnetic field.

Related questions

What determines the strength of the magnetic field when current flows through a conductor?

Magnetic fields currently flows through a conductor is determined by multiplying the number of turns of wire by the current flow. This is what causes electricity.


Why don't you look at the number of loops a solenoid has at a different time then the voltage in the strength of an electromagnet?

The number of loops in a solenoid determines its magnetic field strength, while the voltage determines the current passing through the solenoid. These two factors are independent of each other, so changing the number of loops will alter the magnetic field strength, and changing the voltage will affect the current and subsequently the magnetic field strength. Both factors play a key role in determining the overall strength of the electromagnet.


What determines the strength of a coil?

The strength of a coil is determined by factors such as the number of turns of wire, the type of material used, the diameter of the coil, and the current passing through it. Increasing the number of turns or the current will typically increase the strength of the magnetic field generated by the coil.


In an electromagnet as the electric current changes what happens to the magnetic field?

As the electric current changes in an electromagnet, the strength of the magnetic field also changes. An increase in current strength leads to a stronger magnetic field, while a decrease in current strength results in a weaker magnetic field. This ability to control the magnetic field strength makes electromagnets versatile in various applications.


How did the size of the current in the coil affect the strength of the elctromagnet?

The strength of an electromagnet is directly proportional to the current passing through the coil. Increasing the current will increase the strength of the magnetic field produced by the electromagnet, whereas decreasing the current will weaken the magnetic field.


What does the strength of the magnetic field surrounding a current carrying wire depend on?

The strength of the magnetic field surrounding a current-carrying wire depends on the magnitude of the current flowing through the wire. The magnetic field strength also depends on the distance from the wire, with the field becoming weaker as the distance increases. Additionally, the material surrounding the wire can affect the strength of the magnetic field.


How does the strength of a magnetic field around a wire vary?

The strength of a magnetic field around a wire is directly proportional to the current flowing through the wire. Increasing the current flow increases the strength of the magnetic field, while increasing the distance from the wire decreases the strength of the magnetic field. This relationship follows the right-hand grip rule, where the direction of the magnetic field is determined by the direction of the current flow.


Why do the magnetic forces acting on the coil change as the current running through the coil changes?

The magnetic forces acting on the coil change with the current because the strength of the magnetic field produced by the current in the coil is directly proportional to the current flowing through it. As the current changes, the magnetic field strength changes, leading to a change in the magnetic forces acting on the coil.


What would happen to the strength of the field if the current was increased?

If the current in a wire is increased, the strength of the magnetic field around the wire would also increase. This is because magnetic field strength is directly proportional to the amount of current flowing through the wire.


What determines the strength of a magnetic field?

The strength of a magnetic field is determined by the magnitude of the magnetic material's magnetization and the distance from the magnetized object. It is also influenced by the size and shape of the magnet. Faraday's law states that the strength of the magnetic field is directly proportional to the current flowing through a conductor.


What determines the strength of the magnetic field when current flows through the conductor?

"If the conductor is wound into a coil the magnetic lines of flux add to produce a stronger magnetic field... Another factor is the amount of current flowing through the wire" (from Delmar's Standard Textbook of Electricity: Fifth Edition, Unit 4 - Magnetism, pages 111-112) The strength of an electromagnet is proportional to its ampere-turns; determined by multiplying the number of turns of wire by the current flow.


What all the current to enter the electromagnet in an electric motor?

The current flowing in the electromagnet of an electric motor creates a magnetic field that interacts with the stator to produce a rotating force. This force causes the rotor to rotate, resulting in the mechanical output of the motor. The strength of the current in the electromagnet determines the intensity of the magnetic field and affects the motor's performance.