nswer Scientists have recognised the need to know the initial conditions of substances being dated, and have devised methods to... more »
The two main methods for determining the resultant vector of two or more vectors are graphical and algebraic methods. In the graphical method, vectors are drawn to scale with appropriate angles and then the resultant vector is measured. In the algebraic method, vector components are added or subtracted using trigonometric functions to find the magnitude and direction of the resultant vector.
The two main methods for determining the resultant of vectors are the graphical method, where vectors are drawn to scale and added tip-to-tail to find the resultant, and the component method, where vectors are broken down into their horizontal and vertical components which are then added separately to find the resultant.
The graphical method involves using vector diagrams to visually represent the vectors and their resultant. The analytical method involves breaking down the vectors into their components and then summing the components to find the resultant. The trigonometric method uses trigonometric functions to calculate the magnitude and direction of the resultant vector.
The resultant of two vectors can be computed analytically from a vector parallelogram by determining the diagonal of the parallelogram. The diagonal represents the resultant vector, which can be found by adding the two vectors tip-to-tail. This method is based on the parallelogram law of vector addition.
A resultant on a vector diagram is drawn by connecting the tail of the first vector to the head of the second vector. Then, the resultant vector is drawn from the tail of the first vector to the head of the second vector. The resultant vector represents the sum or difference of the two original vectors.
A resutant vector
The two main methods for determining the resultant of vectors are the graphical method, where vectors are drawn to scale and added tip-to-tail to find the resultant, and the component method, where vectors are broken down into their horizontal and vertical components which are then added separately to find the resultant.
The graphical method involves using vector diagrams to visually represent the vectors and their resultant. The analytical method involves breaking down the vectors into their components and then summing the components to find the resultant. The trigonometric method uses trigonometric functions to calculate the magnitude and direction of the resultant vector.
The resultant of two vectors can be computed analytically from a vector parallelogram by determining the diagonal of the parallelogram. The diagonal represents the resultant vector, which can be found by adding the two vectors tip-to-tail. This method is based on the parallelogram law of vector addition.
The Resultant Vector minus the other vector
A resultant on a vector diagram is drawn by connecting the tail of the first vector to the head of the second vector. Then, the resultant vector is drawn from the tail of the first vector to the head of the second vector. The resultant vector represents the sum or difference of the two original vectors.
The resultant vector is the vector that 'results' from adding two or more vectors together. This vector will create some angle with the x -axis and this is the angle of the resultant vector.
the difference between resultant vector and resolution of vector is that the addition of two or more vectors can be represented by a single vector which is termed as a resultant vector. And the decomposition of a vector into its components is called resolution of vectors.
by method of finding resultant
A resutant vector
Equilibrant vector is the opposite of resultant vector, they act in opposite directions to balance each other.
You can use the graphical method, which involves drawing vectors on a coordinate system and adding them tip-to-tail to find the resultant vector. Alternatively, you can use the component method, breaking each vector into its horizontal and vertical components and adding them separately to find the resultant vector.
If the scalar is > 1 the resultant vector will be larger and in the same direction. = 1 the resultant vector will be the same as the original vector. between 0 and 1 the resultant vector will be smaller and in the same direction. = 0 the resultant vector will be null. If the scalar is less than 0, then the pattern will be the same as above except that the direction of the resultant will be reversed.