The relationship between mass and force is described by Newton's second law of motion, which states that force is equal to mass multiplied by acceleration. In simpler terms, the greater the mass of an object, the more force is needed to accelerate it.
Chat with our AI personalities
The relationship between force and mass is described by Newton's second law of motion, which states that the force acting on an object is equal to the mass of the object multiplied by its acceleration. In simpler terms, the greater the mass of an object, the more force is needed to accelerate it.
In physics, the relationship between mass and force is described by Newton's second law of motion. This law states that the force acting on an object is equal to the mass of the object multiplied by its acceleration. In simpler terms, the greater the mass of an object, the more force is needed to accelerate it.
The relationship between force, mass, and velocity is described by the equation fmv. This equation states that the force acting on an object is equal to the product of its mass and velocity. In simpler terms, the force applied to an object depends on how heavy it is and how fast it is moving.
In physics, the relationship between mass, force, and acceleration is described by Newton's second law of motion. This law states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. In other words, the greater the force applied to an object, the greater its acceleration will be, and the greater the mass of an object, the smaller its acceleration will be for a given force.
In uniform circular motion, the relationship between force and mass is described by the equation F m a, where F is the force acting on an object, m is the mass of the object, and a is the acceleration of the object. This equation shows that the force required to keep an object moving in a circular path is directly proportional to the mass of the object.