You can find the acceleration of a pushed object by dividing the net force acting on the object by its mass, using the formula a = F/m, where a is the acceleration, F is the net force, and m is the mass of the object.
To find the acceleration, you can use the formula F = ma, where F is the force applied, m is the mass of the object (10 kg), and a is the acceleration. Rearranging the formula to solve for acceleration gives a = F/m. Plugging in the values gives a = 65N / 10kg = 6.5 m/s^2. Therefore, the acceleration of the boulder will be 6.5 m/s^2.
The acceleration of the 5 kg mass pushed by a 10 N force can be calculated using the formula: acceleration = force / mass. Plugging in the values, we get acceleration = 10 N / 5 kg = 2 m/s^2. Therefore, the acceleration of the mass would be 2 m/s^2.
The formula for force is F = ma, where F represents force, m is mass, and a is acceleration. For acceleration, the formula is a = F/m, where a is acceleration, F is force, and m is mass.
The acceleration of the 3 kg ball pushed with a 15 N force can be calculated using Newton's second law: F = ma. Rearranging the formula to solve for acceleration, we have a = F/m. Plugging in the values, we get a = 15 N / 3 kg = 5 m/s^2. Hence, the acceleration of the 3 kg ball pushed with a 15 N force is 5 m/s^2.
You can find the acceleration of a pushed object by dividing the net force acting on the object by its mass, using the formula a = F/m, where a is the acceleration, F is the net force, and m is the mass of the object.
To find the acceleration, you can use the formula F = ma, where F is the force applied, m is the mass of the object (10 kg), and a is the acceleration. Rearranging the formula to solve for acceleration gives a = F/m. Plugging in the values gives a = 65N / 10kg = 6.5 m/s^2. Therefore, the acceleration of the boulder will be 6.5 m/s^2.
The acceleration of the 5 kg mass pushed by a 10 N force can be calculated using the formula: acceleration = force / mass. Plugging in the values, we get acceleration = 10 N / 5 kg = 2 m/s^2. Therefore, the acceleration of the mass would be 2 m/s^2.
The formula for force is F = ma, where F represents force, m is mass, and a is acceleration. For acceleration, the formula is a = F/m, where a is acceleration, F is force, and m is mass.
Acceleration is 0.25m/s2 (A = force/mass).
The acceleration of the 3 kg ball pushed with a 15 N force can be calculated using Newton's second law: F = ma. Rearranging the formula to solve for acceleration, we have a = F/m. Plugging in the values, we get a = 15 N / 3 kg = 5 m/s^2. Hence, the acceleration of the 3 kg ball pushed with a 15 N force is 5 m/s^2.
The formula for the pushing force on an incline is given by F = mgsinθ + μmcosθ, where F is the pushing force, m is the mass of the object being pushed, g is the acceleration due to gravity, θ is the angle of the incline, and μ is the coefficient of friction between the object and the surface of the incline.
My bad, im asking why the formula isnt acceleration= force - mass
The formula for force is F = m * a, where F is the force, m is the mass, and a is the acceleration. The formula for mass is m = F / a, and the formula for acceleration is a = F / m.
The object with the smallest mass would have the greatest acceleration when pushed with a force of 8.2 N, as acceleration is inversely proportional to mass when force is constant.
The formula used to calculate force is: Force = mass x acceleration. This formula describes how a force is generated when an object with mass is accelerated.
You can use Newton's second law of motion, which states that acceleration is equal to the net force acting on an object divided by its mass. So, the acceleration of the boulder would be calculated as 65 N / 10 kg = 6.5 m/s^2.