answersLogoWhite

0


Best Answer

Yes, work is being done when you lift a box against the force of gravity. Work is defined as the force applied over a distance, and in this case, the force you exert to lift the box is acting over a vertical distance, thus work is being done.

User Avatar

AnswerBot

8mo ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Is work being done when you lift a box?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

If a person tries to lift a heavy box for 5 seconds and can't make it budge the work done on the box is equal to the amount of energy the person uses?

When a person tries to lift a heavy box but is unable to move it, no work is done on the box because work is only done when there is displacement in the direction of the force. It's possible that the person expended energy in trying to lift the box due to muscle contractions, but if the box doesn't move, no work is done on it.


If a force 10.0 n is used to lift a box a distance of 0.9 m how much work is done?

The work done to lift the box is given by the formula: work = force x distance. Plugging in the values with force = 10.0 N and distance = 0.9 m, the work done would be 9.0 Joules.


A force of 20 N is required to lift a box the box is lifted from the floor to a shelf that is 2 m high the amount of work done is?

Oh, what a lovely question we have here! To find the amount of work done, we can use the formula: work = force × distance. In this case, the force is 20 N and the distance the box is lifted is 2 meters. So, the amount of work done to lift the box to the shelf is 40 joules. Happy little calculations!


If you want to lift a kg box off the floor top a height of 0.5 meters how much work will it take?

The work done to lift the box can be calculated using the formula: work = force x distance. The force required would be equal to the weight of the box, which is the mass of the box multiplied by gravity (9.8 m/s^2). The distance is given as 0.5 meters. Calculate the force needed to lift the box (mass x gravity), then multiply it by the distance to get the work done in Joules.


If you want to lift a 5-kg box to a height of 1 meters how much work must be done?

The work done to lift the 5-kg box to a height of 1 meter would be 49.05 Joules (work = force × distance). In this case, the force required to lift the box against gravity can be calculated as force = mass × gravity, which is force = 5 kg × 9.81 m/s^2.

Related questions

If a person tries to lift a heavy box for 5 seconds and can't make it budge the work done on the box is equal to the amount of energy the person uses?

When a person tries to lift a heavy box but is unable to move it, no work is done on the box because work is only done when there is displacement in the direction of the force. It's possible that the person expended energy in trying to lift the box due to muscle contractions, but if the box doesn't move, no work is done on it.


If a force 10.0 n is used to lift a box a distance of 0.9 m how much work is done?

The work done to lift the box is given by the formula: work = force x distance. Plugging in the values with force = 10.0 N and distance = 0.9 m, the work done would be 9.0 Joules.


A force of 20 N is required to lift a box the box is lifted from the floor to a shelf that is 2 m high the amount of work done is?

Oh, what a lovely question we have here! To find the amount of work done, we can use the formula: work = force × distance. In this case, the force is 20 N and the distance the box is lifted is 2 meters. So, the amount of work done to lift the box to the shelf is 40 joules. Happy little calculations!


If you want to lift a kg box off the floor top a height of 0.5 meters how much work will it take?

The work done to lift the box can be calculated using the formula: work = force x distance. The force required would be equal to the weight of the box, which is the mass of the box multiplied by gravity (9.8 m/s^2). The distance is given as 0.5 meters. Calculate the force needed to lift the box (mass x gravity), then multiply it by the distance to get the work done in Joules.


If you want to lift a 5-kg box to a height of 1 meters how much work must be done?

The work done to lift the 5-kg box to a height of 1 meter would be 49.05 Joules (work = force × distance). In this case, the force required to lift the box against gravity can be calculated as force = mass × gravity, which is force = 5 kg × 9.81 m/s^2.


If you want to lift a 30 kg box to a height of 1 m how much work will it take?

The work done to lift the box to a height of 1 m can be calculated using the formula: work = force x distance. In this case, the force required to lift the box against gravity is equal to its weight, which is 30 kg * 9.8 m/s^2 (acceleration due to gravity). The distance is 1 m. Therefore, the work done is 294 joules.


If you push on a box but the box moves backwards what kind of work is being done?

Negative work is being done when you push on a box but it moves backwards. This means that the force you apply is in the opposite direction of the displacement of the box, resulting in a decrease in its energy.


What is the work being done to slide the box if a box is weighing 345N and is being pushed up an inclined plane that is 3m long A force of 275 is required including friction?

The work done to slide the box up the inclined plane can be calculated by multiplying the force required to push the box (275N) by the distance the box is being moved (3m). Therefore, the work done is 825 Joules.


If you want to lift a 5 kg box to a height of 2 meters how much work must be done?

C.50 j


How much work is done if you hold a 50lbs box for 5 hours?

No work is being done. Work is when an object moves in the same direction as the force applied to it.


A person holding a 30 kg box 1 m above the floor puts it down. How much work was done Remember the force of an object's weight mass and times gravity.?

The work done to lift the box is given by the formula: work = force x distance. The force here is the weight of the box, which is the mass (30 kg) times the gravitational acceleration (9.8 m/s^2), equal to 294 N. The distance lifted is 1 m. Therefore, the work done to lift the box is 294 J.


One situation in which no work is done to an object?

When a force is applied to an object but there is no displacement of the object in the direction of the force, no work is done on the object. For example, holding a heavy box in your hands without moving it requires no work to be done on the box.