Yes, wavelength and frequency are inversely proportional in a vacuum. This means that as wavelength increases, frequency decreases, and vice versa. This relationship is governed by the equation: speed of light = wavelength x frequency.
If a wave's wavelength increases, its frequency decreases. This is because frequency and wavelength are inversely proportional to each other in a wave.
Wavelength and frequency are inversely proportional in the wavelength-frequency equation. This means that as the wavelength of a wave increases, the frequency decreases, and vice versa.
The relationship between frequency and wavelength is inversely proportional. This means that as the frequency of a wave increases, its wavelength decreases, and vice versa. Mathematically, this relationship can be expressed as: frequency = speed of light / wavelength.
Yes, frequency and wavelength are inversely proportional to each other. This means that as the frequency of a wave increases, its wavelength decreases, and vice versa. Mathematically, this relationship is described by the equation: frequency = speed of light / wavelength.
Yes, wavelength and frequency are inversely proportional in a vacuum. This means that as wavelength increases, frequency decreases, and vice versa. This relationship is governed by the equation: speed of light = wavelength x frequency.
If a wave's wavelength increases, its frequency decreases. This is because frequency and wavelength are inversely proportional to each other in a wave.
Wavelength and frequency are inversely proportional in the wavelength-frequency equation. This means that as the wavelength of a wave increases, the frequency decreases, and vice versa.
The relationship between frequency and wavelength is inversely proportional. This means that as the frequency of a wave increases, its wavelength decreases, and vice versa. Mathematically, this relationship can be expressed as: frequency = speed of light / wavelength.
Yes, frequency and wavelength are inversely proportional to each other. This means that as the frequency of a wave increases, its wavelength decreases, and vice versa. Mathematically, this relationship is described by the equation: frequency = speed of light / wavelength.
Wavelength and frequency are inversely proportional.
frequency of wave is inversely proportional to wavelength
frequency of wave is inversely proportional to wavelength
When the wavelength of a wave increases, the frequency decreases. This is because frequency and wavelength are inversely proportional in a wave. A longer wavelength means fewer wave cycles can fit in a given period of time, resulting in a lower frequency.
The frequency and wavelength of electromagnetic waves are inversely proportional. This means that as the frequency increases, the wavelength decreases, and vice versa. This relationship is described by the equation: speed of light = frequency x wavelength.
The frequency of a wavelength is inversely proportional to its wavelength. This means that as the wavelength increases, the frequency decreases, and vice versa. This relationship is described by the formula: frequency = speed of light / wavelength.
frequency. This is because frequency and wavelength are inversely proportional in a wave - as wavelength increases, frequency decreases.