The energy required to melt 1 kg of copper at its melting point of about 1084°C is approximately 205 kJ. Therefore, to melt 2 kg of copper, you would need around 410 kJ of energy.
To melt 2 kg of gold, it would require approximately 66,190 Joules per gram. Therefore, for 2 kg of gold, the total energy required would be around 132,380,000 Joules.
The heat of fusion for gold is 64.4 kJ/mol. To convert this to energy required to melt 1.5 kg of gold, we need to calculate the number of moles in 1.5 kg of gold (1.5 kg of gold is approximately 0.047 moles). Then, the energy required would be approximately 3.03 kJ.
The specific heat of gold is 0.129 J/g°C, and its melting point is 1064°C. The energy required to melt 1.5 kg of gold can be calculated using the formula: Energy = mass * specific heat * temperature change. So, the energy required would be approximately 2.3 x 10^6 Joules.
The specific heat capacity of gold is 0.128 J/g°C, and the heat of fusion of gold is 63 J/g. To calculate the energy required to melt 2 kg of gold, you would first need to convert the mass to grams (2000 g). The energy required would be the sum of the energy needed to raise the temperature from the melting point to the melting point and the energy needed for the phase change.
The energy required to melt ice is known as the heat of fusion, which is about 334 joules per gram. Therefore, it would take approximately 3340 joules of energy to melt 10g of ice.
The energy required to melt 1 kg of copper at its melting point of about 1084°C is approximately 205 kJ. Therefore, to melt 2 kg of copper, you would need around 410 kJ of energy.
The energy required to melt a substance can be calculated using the formula: Energy = mass x heat of fusion. For water, the heat of fusion is 334 J/g. Therefore, the energy required to melt 56g of water would be 56g x 334 J/g = 18,704 J.
To melt 2 kg of gold, it would require approximately 66,190 Joules per gram. Therefore, for 2 kg of gold, the total energy required would be around 132,380,000 Joules.
The measurement of how much heat energy is required for a substance to melt is called the heat of fusion. It is the amount of energy required to change a substance from a solid to a liquid at its melting point.
36.8 kj
The heat of fusion for gold is 64.4 kJ/mol. To convert this to energy required to melt 1.5 kg of gold, we need to calculate the number of moles in 1.5 kg of gold (1.5 kg of gold is approximately 0.047 moles). Then, the energy required would be approximately 3.03 kJ.
The specific heat of gold is 0.129 J/g°C, and its melting point is 1064°C. The energy required to melt 1.5 kg of gold can be calculated using the formula: Energy = mass * specific heat * temperature change. So, the energy required would be approximately 2.3 x 10^6 Joules.
J mesons are subatomic particles that do not experience a melting phase transition like larger particles or materials. As such, they do not require energy to melt as they do not solidify.
The specific heat capacity of gold is 0.128 J/g°C, and the heat of fusion of gold is 63 J/g. To calculate the energy required to melt 2 kg of gold, you would first need to convert the mass to grams (2000 g). The energy required would be the sum of the energy needed to raise the temperature from the melting point to the melting point and the energy needed for the phase change.
It takes approximately 64,000 Joules of energy to melt 1kg of gold. Therefore, to melt 2kg of gold, you would need around 128,000 Joules of energy.
800kj-----------Apex<('-'<)