Based on the 9th grade book of Physical Science... Gravity is a force that acts between two masses, and Terminal velocity is the constant velocity of a falling object when the force of air resistance equals the force of gravity. So, gravity causes objects to accelerate downward, whereas air resistance acts in the direction opposite to the motion and reduces acceleration... which ties together terminal velocity.
Chat with our AI personalities
Terminal velocity is the maximum speed an object can reach when falling due to gravity. Gravity is responsible for pulling the object downwards, while air resistance acts in the opposite direction. When the force of gravity is balanced by the force of air resistance, the object stops accelerating and reaches its terminal velocity.
When air resistance and gravity are equal, it is known as terminal velocity. At terminal velocity, an object falling through the air no longer accelerates but rather falls at a constant speed due to the balance between air resistance and gravity.
The velocity at the starting point when an object tries to attain terminal velocity is zero. As the object falls, it accelerates due to gravity until air resistance builds up to match the force of gravity, resulting in a constant terminal velocity being reached.
Terminal velocity of an object can be found by balancing the forces acting on it. When the force of gravity pulling the object down is equal to the force of air resistance pushing up, the object reaches its terminal velocity. This can be calculated using the equation: Terminal velocity (mass x acceleration due to gravity) / drag coefficient.
The velocity at which a falling object travels when the force of air resistance matches the force of gravity is called the terminal velocity. At terminal velocity, the object no longer accelerates and falls at a constant speed. The exact value of terminal velocity depends on the object's size, shape, and mass, as well as air density and viscosity.
The maximum velocity reached by a falling object when the resistance of the medium is equal to the force due to gravity is called terminal velocity. At terminal velocity, the object no longer accelerates and reaches a constant speed as the drag force balances out the force of gravity acting on the object.