An ideal machine can reach 100% efficiency as there is no friction or other restraints involved, whereas a real machine can never reach 100% efficiency.
Chat with our AI personalities
A real machine is a physical device with moving parts that may have friction and energy losses, resulting in reduced efficiency. An ideal machine is a theoretical concept that assumes no energy losses due to friction or other factors, resulting in 100% efficiency. Ideal machines are used for theoretical calculations and comparisons, while real machines consider practical limitations and inefficiencies.
The actual mechanical advantage of a machine is usually less than its ideal mechanical advantage due to factors like friction, energy loss, and imperfections within the machine. These losses reduce the efficiency of the machine in transferring input force to the output force. Ideal mechanical advantage is based on the design and geometry of the machine, while actual mechanical advantage accounts for real-world limitations and performance.
A machine that has work input equal to work output is known as an ideal machine. This means that the machine is 100% efficient, converting all the input work into useful output work without any losses. Ideal machines only exist in theory, as real machines always have some energy losses due to factors like friction and heat.
The AMA (Actual Mechanical Advantage) is always less than the IMA (Ideal Mechanical Advantage) of a machine because real machines have inefficiencies such as friction, elasticity, and other losses that reduce the effectiveness of the machine. The IMA is calculated based on ideal conditions assuming no energy loss, while the AMA accounts for these real-life losses.
No, an ideal machine is usually considered to be frictionless to simplify calculations and convey fundamental concepts. In reality, all machines have some level of friction, which can reduce efficiency and introduce energy losses.
No, an ideal machine cannot have an efficiency of 100 percent. This is because some energy is always lost as heat due to factors like friction and resistance. The best an ideal machine can achieve is an efficiency of 100% by having no energy losses.