answersLogoWhite

0

The image distance is the distance from the lens to where the image is formed, while the object distance is the distance from the lens to the object. In general, for real images, the image distance is different from the object distance. For virtual images, the image distance is negative and the object distance is positive.

User Avatar

AnswerBot

10mo ago

Still curious? Ask our experts.

Chat with our AI personalities

BeauBeau
You're doing better than you think!
Chat with Beau
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor

Add your answer:

Earn +20 pts
Q: How does the image distance compare to the object distance?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

Why if you move the object away from the lens the size of the image get smaller?

Moving the object away from the lens increases the object-image distance. According to the thin lens equation, as the object-image distance increases, the image distance increases incrementally more than the object distance. This results in a smaller image size due to the inverse relationship between image size and image distance.


How does the size of the image compare to the size of the object?

The size of the image is based on the distance between the object and the lens, as well as the focal length of the lens. The image can be the same size as the object if the object is at the focal point and the lens follows the 1/f = 1/do + 1/di equation.


Is the distance from the object to the mirror is less than the apparent from the image?

The distance from the object to the mirror is equal to the distance from the image to the mirror in a plane mirror. The image appears to be as far behind the mirror as the object is in front of it, so the apparent distance from the image to the mirror is equal to the actual distance from the object to the mirror.


How are focal length object distance and image distance related?

The focal length of a lens is related to the object distance and image distance by the lens equation: 1/f = 1/do + 1/di, where f is the focal length, do is the object distance, and di is the image distance. This equation describes how the lens focuses light rays from an object at a certain distance to form an image at a specific distance.


What is the relationship between image distance and object distance in optics?

In optics, the relationship between image distance and object distance is described by the lens equation: 1/f 1/di 1/do, where f is the focal length of the lens, di is the image distance, and do is the object distance. This equation shows that as the object distance changes, the image distance also changes in a reciprocal manner.