To illustrate the graph of a simple pendulum, you can plot the displacement (angle) of the pendulum on the x-axis and the corresponding period of oscillation on the y-axis. As the pendulum swings back and forth, you can record the angle and time taken for each oscillation to create the graph. The resulting graph will show the relationship between displacement and period for the simple pendulum.
Compound pendulum is a physical pendulum whereas a simple pendulum is ideal pendulum. The difference is that in simple pendulum centre of mass and centre of oscillation are at the same distance.
A compound pendulum is called an equivalent simple pendulum because its motion can be approximated as that of a simple pendulum with the same period. This simplification allows for easier analysis and calculation of its behavior.
Compound pendulum is a physical pendulum whereas a simple pendulum is ideal pendulum. The difference is that in simple pendulum centre of mass and centre of oscillation are at the same distance.
The motion of a pendulum is like that of a wave because both have regular oscillations back and forth. The swinging motion of a pendulum can be described in terms of its frequency and amplitude, similar to how a wave can be characterized by its frequency and wavelength. Additionally, both pendulum motion and wave motion involve the transfer of energy.
The motion of a simple pendulum will be simple harmonic when the angle of displacement from the vertical is small (less than 10 degrees) and the amplitude is also small.
A pendulum moves in simple harmonic motion. If a graph of the pendulum's motion is drawn with respect with respect to time, the graph will be a sine wave. Pure tones are experienced when the eardrum moves in simple harmonic motion. In these cases "wave" refers not to the thing moving, but to the graph representing the movement.
A simple pendulum exhibits simple harmonic motion
Compound pendulum is a physical pendulum whereas a simple pendulum is ideal pendulum. The difference is that in simple pendulum centre of mass and centre of oscillation are at the same distance.
A compound pendulum is called an equivalent simple pendulum because its motion can be approximated as that of a simple pendulum with the same period. This simplification allows for easier analysis and calculation of its behavior.
A simple pendulum has one piece that swings. A complex pendulum has at least two swinging parts, attached end to end. A simple pendulum is extremely predictable, while a complex pendulum is virtually impossible to accurately predict.
The simple pendulum can be used to determine the acceleration due to gravity.
applications of simple pendulum
A line graph, probably.
A simple pendulum.
Compound pendulum is a physical pendulum whereas a simple pendulum is ideal pendulum. The difference is that in simple pendulum centre of mass and centre of oscillation are at the same distance.
simple pendulum center of mass and center of oscillation are at the same distance.coupled pendulum is having two bobs attached with a spring.
The motion of a pendulum is like that of a wave because both have regular oscillations back and forth. The swinging motion of a pendulum can be described in terms of its frequency and amplitude, similar to how a wave can be characterized by its frequency and wavelength. Additionally, both pendulum motion and wave motion involve the transfer of energy.