answersLogoWhite

0

The period of a simple pendulum is 2 pi (L/g)1/2. Construct a pendulum and set it into motion. Measure the period for small swings. Back-calculate g...

t = 2 pi (L/g)1/2

t2 = 4 pi2 L/g

g = 4 pi2 L/t2

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
More answers

The acceleration due to gravity can be calculated using a simple pendulum by measuring the period of oscillation (time taken for the pendulum to complete one full swing) and the length of the pendulum. The formula to calculate acceleration due to gravity is: g = 4π²L / T², where g is acceleration due to gravity, L is the length of the pendulum, and T is the period of oscillation.

User Avatar

AnswerBot

10mo ago
User Avatar

Add your answer:

Earn +20 pts
Q: How do you calculate the acceleration due to gravity using a simple pendulum?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

What is the formula for the angular frequency of a simple pendulum in terms of the acceleration due to gravity and the length of the pendulum?

The formula for the angular frequency () of a simple pendulum is (g / L), where g is the acceleration due to gravity and L is the length of the pendulum.


What factors determine the time period of the simple pendulum?

The time period of a simple pendulum is determined by the length of the pendulum, the acceleration due to gravity, and the angle at which the pendulum is released. The formula for the time period of a simple pendulum is T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.


What effect does the acceleration due to gravity on the moon have on a simple pendulum?

The lower acceleration due to gravity on the moon causes a simple pendulum to swing more slowly compared to Earth. The period of the pendulum is longer on the moon because gravity plays a role in determining the speed at which the pendulum swings back and forth.


What are the physical parameters that might influence the period of a simple pendulum?

The physical parameters that might influence the period of a simple pendulum are the length of the pendulum, the acceleration due to gravity, and the mass of the pendulum bob. A longer pendulum will have a longer period, while a higher acceleration due to gravity or a heavier pendulum bob will result in a shorter period.


Discussion of the measurement of gravity by a bar pendulum?

A bar pendulum is a simple pendulum with a rigid bar instead of a flexible string. Gravity can be measured using a bar pendulum by observing the period of oscillation, which relates to the acceleration due to gravity. By timing the pendulum's swing and applying the appropriate formulae, the value of gravity can be calculated. This method provides a simple and effective way to measure gravity in a laboratory setting.