Wavelength and frequency are inversely related in a wave, meaning that as the wavelength decreases, the frequency increases and vice versa. This relationship is described by the equation: speed of light = frequency × wavelength.
Frequency and wavelength are inversely related; as the frequency of a wave increases, its wavelength decreases, and vice versa. This relationship is described by the equation: speed = frequency x wavelength, meaning that if the speed of the wave is constant, a higher frequency will result in a shorter wavelength.
The frequency and wavelength of a light wave are inversely related: as the frequency increases, the wavelength decreases, and vice versa. This relationship is described by the equation: speed of light = frequency x wavelength.
When frequency decreases, wavelength increases. Frequency and wavelength are inversely related, meaning that as one increases, the other decreases. This relationship is described by the equation: wavelength = speed of light / frequency.
When the frequency of a waveform increases, the wavelength decreases. This is because wavelength and frequency are inversely related in a wave, following the equation: wavelength = speed of light / frequency.
Wavelength and frequency are inversely related in a wave, meaning that as the wavelength decreases, the frequency increases and vice versa. This relationship is described by the equation: speed of light = frequency × wavelength.
Wavelength, or alternatively its frequency.
Energy of light photons is related to frequency as Energy = h(Planck's constant)* frequency Frequency = velocity of wave / wavelength So energy = h * velocity of the wave / wavelength
Frequency and wavelength are inversely related; as the frequency of a wave increases, its wavelength decreases, and vice versa. This relationship is described by the equation: speed = frequency x wavelength, meaning that if the speed of the wave is constant, a higher frequency will result in a shorter wavelength.
The frequency and wavelength of a light wave are inversely related: as the frequency increases, the wavelength decreases, and vice versa. This relationship is described by the equation: speed of light = frequency x wavelength.
When frequency decreases, wavelength increases. Frequency and wavelength are inversely related, meaning that as one increases, the other decreases. This relationship is described by the equation: wavelength = speed of light / frequency.
When the frequency of a waveform increases, the wavelength decreases. This is because wavelength and frequency are inversely related in a wave, following the equation: wavelength = speed of light / frequency.
The frequency of light is inversely proportional to its wavelength. This means that as the frequency of light increases, its wavelength decreases, and vice versa. This relationship is described by the equation: speed of light = frequency x wavelength.
Freq times Wavelength = speed of light. Amplitude in totally independent.
To decrease the value of wavelength, you can increase the frequency of the wave. This is because the wavelength and frequency of a wave are inversely related according to the wave equation: wavelength = speed of light / frequency. So, by increasing the frequency, you will effectively decrease the wavelength.
The wavelength of light is inversely proportional to its frequency. This means that light with a shorter wavelength will have a higher frequency, and light with a longer wavelength will have a lower frequency. In other words, as the wavelength decreases, the frequency increases.
For light they would be gamma rays, or waves with a frequency greater than 1 * 10^20 (10000000000000000000) Hz. And really, as a general rule, the higher the frequency the shorter the wavelength. If you want to calculate the frequency or wavelength you take the speed of light (~3.00*10^8 m/s) and divide it by either the frequency or wavelength, and your answer will be the wavelength (if you used frequency) or the frequency (if you used wavelength).