To find the wavelength of a photon, you can use the equation c / f, where is the wavelength, c is the speed of light (approximately 3.00 x 108 m/s), and f is the frequency of the photon. Simply divide the speed of light by the frequency of the photon to calculate its wavelength.
To find the wavelength of the photon, you can use the formula: wavelength = (Planck's constant) / (photon energy). Substituting the values, the wavelength is approximately 1.024 x 10^-7 meters.
The energy of a photon is inversely proportional to its wavelength. This means that as the wavelength increases, the energy of the photon decreases. Conversely, as the wavelength decreases, the energy of the photon increases.
Since the energy of a photon is inversely proportional to its wavelength, for a photon with double the energy of a 580 nm photon, its wavelength would be half that of the 580 nm photon. Therefore, the wavelength of the photon with twice the energy would be 290 nm.
As the wavelength of a photon increases, its frequency decreases. This means the energy of the photon decreases as well, since photon energy is inversely proportional to its wavelength.
The wavelength of a photon can be calculated using the equation E = hf, where E is the energy of the photon, h is Planck's constant (6.63 x 10^-34 J s), and f is the frequency of the photon. From this, you can calculate the frequency of the photon using f = E/h. Then, you can use the speed of light equation c = fλ to find the wavelength with λ = c/f. Substituting the values accordingly, you can find the wavelength of the photon with 3.38 x 10^-19 J of energy.
To find the wavelength of the photon, you can use the formula: wavelength = (Planck's constant) / (photon energy). Substituting the values, the wavelength is approximately 1.024 x 10^-7 meters.
The wavelength of a photon can be calculated using the equation: wavelength = Planck's constant / photon energy. Given the photon energy, you can plug in the values to find the corresponding wavelength.
The energy of a photon is inversely proportional to its wavelength. This means that as the wavelength increases, the energy of the photon decreases. Conversely, as the wavelength decreases, the energy of the photon increases.
Since the energy of a photon is inversely proportional to its wavelength, for a photon with double the energy of a 580 nm photon, its wavelength would be half that of the 580 nm photon. Therefore, the wavelength of the photon with twice the energy would be 290 nm.
As the wavelength of a photon increases, its frequency decreases. This means the energy of the photon decreases as well, since photon energy is inversely proportional to its wavelength.
The wavelength of a photon can be calculated using the equation E = hf, where E is the energy of the photon, h is Planck's constant (6.63 x 10^-34 J s), and f is the frequency of the photon. From this, you can calculate the frequency of the photon using f = E/h. Then, you can use the speed of light equation c = fλ to find the wavelength with λ = c/f. Substituting the values accordingly, you can find the wavelength of the photon with 3.38 x 10^-19 J of energy.
The total energy of a photon with a wavelength of 3000 A is divided into two photons, one red photon with a wavelength of 7600 A, and another photon with a shorter wavelength. To calculate the wavelength of the second photon, you can use the conservation of energy principle, where the sum of the energies of the two new photons is equal to the energy of the original photon. This will give you the wavelength of the other photon.
The energy of a photon can be calculated using the formula E=hf, where E is energy, h is Planck's constant (6.63 x 10^-34 J.s), and f is the frequency of the photon. Alternatively, you can use the formula E=hc/λ, where c is the speed of light (3.00 x 10^8 m/s) and λ is the wavelength of the photon.
To calculate the wavelength of a photon emitted in a given scenario, you can use the formula: wavelength speed of light / frequency of the photon. The speed of light is approximately 3.00 x 108 meters per second. The frequency of the photon can be determined from the energy of the photon using the equation E hf, where E is the energy of the photon, h is Planck's constant (6.63 x 10-34 joule seconds), and f is the frequency of the photon. Once you have the frequency, you can plug it into the formula to find the wavelength.
Yes, a photon with a wavelength of 420nm contains more energy than a photon with a wavelength of 790nm. This is because energy is inversely proportional to wavelength, meaning shorter wavelengths have higher energy.
The frequency of a photon can be calculated using the equation: frequency = speed of light / wavelength. Plugging in the values for speed of light and wavelength, the frequency of a photon with a wavelength of 565nm is approximately 5.31 x 10^14 Hz.
Photon Energy E=hf = hc/w thus wavelength w= hc/E or the wavelength is hc divided by the energy of the photon or w= .2 e-24 Joule meter/Photon Energy.