answersLogoWhite

0

To determine velocity from an acceleration-time graph, you can find the area under the curve of the graph. This area represents the change in velocity over time. By calculating this area, you can determine the velocity at any given point on the graph.

User Avatar

AnswerBot

2mo ago

What else can I help you with?

Continue Learning about Physics

How can one determine velocity from a position-time graph?

To determine velocity from a position-time graph, you can find the slope of the graph at a specific point. The slope represents the rate of change of position, which is the velocity at that point. A steeper slope indicates a higher velocity, while a flatter slope indicates a lower velocity.


How can one determine the average acceleration from a velocity-time graph?

To determine the average acceleration from a velocity-time graph, you can calculate the slope of the line connecting the initial and final velocity points on the graph. This slope represents the average acceleration over that time interval.


How can one determine the position of an object from a velocity graph?

To determine the position of an object from a velocity graph, you can find the area under the velocity curve. The area represents the displacement of the object. The position can be calculated by integrating the velocity function over a specific time interval.


How can one determine the velocity on a position-time graph?

To determine velocity on a position-time graph, calculate the slope of the line at a specific point. The slope represents the rate of change in position over time, which is the velocity. A steeper slope indicates a higher velocity, while a flatter slope indicates a lower velocity.


How can one learn to find kinematic variables from a graph of position vs. time?

To find kinematic variables from a graph of position vs. time, one can calculate velocity by finding the slope of the graph at a specific point, and acceleration by finding the slope of the velocity vs. time graph. Additionally, one can determine displacement by finding the area under the velocity vs. time graph.

Related Questions

How can one determine velocity from a position-time graph?

To determine velocity from a position-time graph, you can find the slope of the graph at a specific point. The slope represents the rate of change of position, which is the velocity at that point. A steeper slope indicates a higher velocity, while a flatter slope indicates a lower velocity.


How can one determine the average acceleration from a velocity-time graph?

To determine the average acceleration from a velocity-time graph, you can calculate the slope of the line connecting the initial and final velocity points on the graph. This slope represents the average acceleration over that time interval.


How can one determine the position of an object from a velocity graph?

To determine the position of an object from a velocity graph, you can find the area under the velocity curve. The area represents the displacement of the object. The position can be calculated by integrating the velocity function over a specific time interval.


How can one determine the velocity on a position-time graph?

To determine velocity on a position-time graph, calculate the slope of the line at a specific point. The slope represents the rate of change in position over time, which is the velocity. A steeper slope indicates a higher velocity, while a flatter slope indicates a lower velocity.


How can one learn to find kinematic variables from a graph of position vs. time?

To find kinematic variables from a graph of position vs. time, one can calculate velocity by finding the slope of the graph at a specific point, and acceleration by finding the slope of the velocity vs. time graph. Additionally, one can determine displacement by finding the area under the velocity vs. time graph.


How can one determine acceleration from a distance-time graph?

To determine acceleration from a distance-time graph, calculate the slope of the graph at a specific point. The steeper the slope, the greater the acceleration. The formula for acceleration is acceleration change in velocity / time.


How can one determine an object's position from a velocity graph?

To determine an object's position from a velocity graph, you can find the area under the velocity curve. The area represents the displacement or change in position of the object. The position at any given time can be calculated by adding up the areas under the curve up to that time.


How can one determine the average acceleration from a position-time graph?

To determine the average acceleration from a position-time graph, you can calculate the slope of the line connecting the initial and final velocity points on the graph. This slope represents the average acceleration over that time interval.


What can you calculate from velocity time graph?

From a velocity-time graph, you can calculate the acceleration by finding the slope of the graph at a certain point. The area under the graph represents the displacement of the object. You can also determine the direction of motion based on the slope of the graph (positive slope indicates motion in one direction, negative slope indicates motion in the opposite direction).


The slope of velocity versus time graph gives?

The slope of a velocity versus time graph gives acceleration. By calculating the slope of the graph at a particular point, you can determine the acceleration of an object at that specific moment in time.


How would one determine Acceleration from a V-t Graph?

Acceleration can be determined from a velocity-time graph by calculating the slope of the line on the graph. The steeper the slope, the greater the acceleration. If the graph is curved, acceleration can be calculated by finding the tangent to the curve at a specific point.


How can one determine the wavelength from a graph?

To determine the wavelength from a graph, you can measure the distance between two consecutive peaks or troughs on the graph. This distance represents one full wavelength.