Unless the wire is broken, a bent wire should still be able to conduct electricity as well as a straight one.
Bends in a wire do not affect its resistance because the cross-sectional area and length of the wire remain the same regardless of the bends. Resistance is determined by these two factors, according to the formula R = ρ*(L/A), where ρ is the resistivity of the material, L is the length of the wire, and A is the cross-sectional area. As long as these parameters remain constant, the resistance of the wire will stay the same.
A thin and long wire made of a material with high resistivity, such as nichrome or tungsten, would have the greatest electrical resistance.
Yes, bending the wire can potentially affect its electrical resistance. The resistance of a wire is influenced by its dimensions, material, and temperature. Bending a wire can alter its cross-sectional area, length, or even cause deformations that impact the flow of electrons and increase resistance.
A long and thin wire made of a material with high resistivity and low conductivity would have the greatest electrical resistance. The resistance of a wire is directly proportional to its length and inversely proportional to its cross-sectional area, so a long, thin wire will have a greater resistance compared to a shorter, thicker wire.
Unless the wire is broken, a bent wire should still be able to conduct electricity as well as a straight one.
Bends in a wire do not affect its resistance because the cross-sectional area and length of the wire remain the same regardless of the bends. Resistance is determined by these two factors, according to the formula R = ρ*(L/A), where ρ is the resistivity of the material, L is the length of the wire, and A is the cross-sectional area. As long as these parameters remain constant, the resistance of the wire will stay the same.
It's dependent on the wire's composition. That is, what material it is made of. <<>> The electrical resistance in a wire depends on the wire's length and cross sectional area.
Increasing the wire gauge from AWG 22 to AWG 26 will increase the wire's resistance because a higher gauge corresponds to a thinner wire. Thinner wires have higher resistance due to increased electrical resistance per unit length. Therefore, a wire with AWG 26 will have higher resistance compared to a wire with AWG 22.
A thin and long wire made of a material with high resistivity, such as nichrome or tungsten, would have the greatest electrical resistance.
Yes, bending the wire can potentially affect its electrical resistance. The resistance of a wire is influenced by its dimensions, material, and temperature. Bending a wire can alter its cross-sectional area, length, or even cause deformations that impact the flow of electrons and increase resistance.
none the resistance is in the wire not the timer
A long and thin wire made of a material with high resistivity and low conductivity would have the greatest electrical resistance. The resistance of a wire is directly proportional to its length and inversely proportional to its cross-sectional area, so a long, thin wire will have a greater resistance compared to a shorter, thicker wire.
A longer wire has more electrical resistance because there is more wire material for the electrical current to pass through. This increased distance results in more collisions between the moving electrons and the wire atoms, which hinders the flow of current and creates more resistance.
electrical resistance
The wire got hot because the electrical current passing through it encountered resistance in the wire, causing the wire to heat up due to the Joule heating effect. This effect occurs when electrical energy is converted into heat as the current flows through a conductor.
As the length of the wire increases, the resistance also increases. This is because a longer wire offers more opposition to the flow of electrical current compared to a shorter wire. Resistance is directly proportional to length, so doubling the length of the wire will double its resistance.