A body can have angular momentum when moving in a straight line if it is rotating about a different axis or point. The angular momentum is a measure of the body's rotational motion and is independent of its linear motion. So, even if the body is moving straight, the angular momentum can still be present due to its rotation.
Translatory motion is the type of motion in which an object moves along a straight line. This motion involves all parts of the object moving in the same direction by the same distance. In a diagram, translatory motion can be represented by showing an object changing its position along a single axis without any rotation or angular displacement.
The angular momentum of a rotating body is equal to the product of its moment of inertia (a measure of its resistance to angular acceleration) and its angular velocity (rate of rotation) because angular momentum is a measure of how much rotational motion a body possesses, and both moment of inertia and angular velocity contribute to this rotational motion. Just like how linear momentum is the product of mass and velocity in linear motion, the product of moment of inertia and angular velocity gives the rotational equivalent of momentum.
Angular Momentum. The conserved quantity we are investigating is called angular momentum. The symbol for angular momentum is the letter L. Just as linear momentum is conserved when there is no net external forces, angular momentum is constant or conserved when the net torque is zero.
No, the direction of angular velocity and angular momentum are not always the same. Angular momentum is defined as the cross product of the position vector and linear momentum, so the direction of angular momentum depends on both the direction of linear momentum and the position vector. Therefore, when angular velocity is decreasing, the direction of angular momentum may change depending on the specific conditions of the system.
angular momentum is the measure of angular motion in a body.
A body can have angular momentum when moving in a straight line if it is rotating about a different axis or point. The angular momentum is a measure of the body's rotational motion and is independent of its linear motion. So, even if the body is moving straight, the angular momentum can still be present due to its rotation.
Translatory motion is the type of motion in which an object moves along a straight line. This motion involves all parts of the object moving in the same direction by the same distance. In a diagram, translatory motion can be represented by showing an object changing its position along a single axis without any rotation or angular displacement.
In orbital motion, the angular momentum of the system is constant if there is no external torque acting on the system. This is a result of the conservation of angular momentum, where the product of the rotating body's moment of inertia and angular velocity remains constant unless acted upon by an external torque.
The angular momentum of a rotating body is equal to the product of its moment of inertia (a measure of its resistance to angular acceleration) and its angular velocity (rate of rotation) because angular momentum is a measure of how much rotational motion a body possesses, and both moment of inertia and angular velocity contribute to this rotational motion. Just like how linear momentum is the product of mass and velocity in linear motion, the product of moment of inertia and angular velocity gives the rotational equivalent of momentum.
Angular Momentum. The conserved quantity we are investigating is called angular momentum. The symbol for angular momentum is the letter L. Just as linear momentum is conserved when there is no net external forces, angular momentum is constant or conserved when the net torque is zero.
No, the direction of angular velocity and angular momentum are not always the same. Angular momentum is defined as the cross product of the position vector and linear momentum, so the direction of angular momentum depends on both the direction of linear momentum and the position vector. Therefore, when angular velocity is decreasing, the direction of angular momentum may change depending on the specific conditions of the system.
The angular momentum of the object remains constant. Angular momentum is conserved unless acted upon by an external torque. So, if an object shrinks in size but not in mass, its moment of inertia decreases (since it is closer to the axis of rotation), but its angular velocity will increase in order to keep the angular momentum constant.
angular momentum = linear momentum (of object) x perpendicular distance (from origin to the object) where x stands for cross product. angular momentum = mv x r (perpendicular dist.)
Law of conservation of momentum applies to any body on which no external torque is acting.
... to continue spinning.
Riders in a ferris wheel possess translatory motion because they are not rotating about their axis and are moving in a curved line without rotation (circular motion)