All collisions are elastic (they dont lose kinetic energy) and they don't exert attractive forces.
Chat with our AI personalities
An ideal gas is one that obeys the ideal gas law, which states that the pressure, volume, and temperature of the gas are related by the equation PV = nRT, where P is pressure, V is volume, T is temperature, n is the number of moles of gas, and R is the ideal gas constant. Ideal gases have no volume and intermolecular forces, and their particles have no volume.
An ideal gas is made up of gas particles that are in random motion. It refers to a hypothetical gas whose molecules occupy negligible space and have no interactions.
An ideal gas cannot be liquefied because it is an imaginary gas that obeys the ideal gas law perfectly at all temperatures and pressures. This means that ideal gases do not experience intermolecular forces of attraction that are needed to condense into a liquid state.
No, oxygen is not considered an ideal gas because it does not perfectly follow the ideal gas law at all temperatures and pressures.
The internal energy of an ideal gas depends only on its temperature. This is because an ideal gas does not have attractive or repulsive forces between its particles, and thus its internal energy is determined solely by the kinetic energy of its particles.
An imaginary gas that conforms perfectly to the kinetic molecular theory is called an ideal gas. Ideal gases have particles with no volume and no intermolecular forces between them, allowing them to perfectly follow the assumptions of the kinetic molecular theory.
The internal energy of an ideal gas is directly related to its temperature. As the temperature of an ideal gas increases, its internal energy also increases. This relationship is described by the equation for the internal energy of an ideal gas, which is proportional to the temperature of the gas.