answersLogoWhite

0


Best Answer

4

User Avatar

Wiki User

11y ago
This answer is:
User Avatar
More answers
User Avatar

AnswerBot

1mo ago

The actual mechanical advantage is calculated as the ratio of the output force to the input force. In this case, the output force is 400 N (the weight lifted) and the input force is 100 N. Therefore, the actual mechanical advantage is 400 N / 100 N = 4.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: A 100 newton force applied to a machine lifts a 400 N object what is the actual mechanical advantage of this machine?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

What is the actual mechanical advantage?

The actual mechanical advantage is the ratio of the output force to the input force in a machine. It is calculated as the ratio of the resistance force to the effort force. It provides insight into how much a machine amplifies or diminishes the force applied to it.


How is the actual mechanical advantage of a machine determined?

The actual mechanical advantage of a machine is determined by comparing the input force applied to the machine to the output force it produces. It is calculated as the ratio of the output force to the input force, taking into account any inefficiencies or energy losses in the machine.


Why is the actual mechanical advantage of a machine different for a machines ideal mechanical advantage?

The actual mechanical advantage of a machine is usually less than its ideal mechanical advantage due to factors like friction, energy loss, and imperfections within the machine. These losses reduce the efficiency of the machine in transferring input force to the output force. Ideal mechanical advantage is based on the design and geometry of the machine, while actual mechanical advantage accounts for real-world limitations and performance.


What is the concept between mechanical advantage and ideal mechanical advantage?

Mechanical advantage is the ratio of the output force produced by a machine to the input force applied to it. Ideal mechanical advantage is the theoretical ratio of the output force to the input force, assuming no energy losses due to friction or other factors. In reality, actual mechanical advantage is always less than ideal mechanical advantage due to factors like friction and inefficiencies in the machine.


Why is the ama of a machine always less than the ima of a machine?

The actual mechanical advantage (AMA) of a machine is always less than the ideal mechanical advantage (IMA) due to factors such as friction, inefficiencies in the machine's design, and other losses of energy. As a result, the actual output force of a machine is typically less than the input force required to operate it, leading to a lower actual mechanical advantage compared to the ideal mechanical advantage.

Related questions

What is the actual mechanical advantage?

The actual mechanical advantage is the ratio of the output force to the input force in a machine. It is calculated as the ratio of the resistance force to the effort force. It provides insight into how much a machine amplifies or diminishes the force applied to it.


How is the actual mechanical advantage of a machine determined?

The actual mechanical advantage of a machine is determined by comparing the input force applied to the machine to the output force it produces. It is calculated as the ratio of the output force to the input force, taking into account any inefficiencies or energy losses in the machine.


Why is the actual mechanical advantage of a machine different for a machines ideal mechanical advantage?

The actual mechanical advantage of a machine is usually less than its ideal mechanical advantage due to factors like friction, energy loss, and imperfections within the machine. These losses reduce the efficiency of the machine in transferring input force to the output force. Ideal mechanical advantage is based on the design and geometry of the machine, while actual mechanical advantage accounts for real-world limitations and performance.


The ratio of resistance force to effort force?

This ratio is known as mechanical advantage in a simple machine. It indicates how much the machine multiplies the force applied. It can be calculated by dividing the resistance force by the effort force for a particular machine.


What is the concept between mechanical advantage and ideal mechanical advantage?

Mechanical advantage is the ratio of the output force produced by a machine to the input force applied to it. Ideal mechanical advantage is the theoretical ratio of the output force to the input force, assuming no energy losses due to friction or other factors. In reality, actual mechanical advantage is always less than ideal mechanical advantage due to factors like friction and inefficiencies in the machine.


What is the difference between actual machanical advantage and ideal machanical advantage?

Ideal mechanical advantage is what could be obtained without the effects of gravity and friction lowering the efficiency of the machine. The actual mechanical advantage is what can actually be obtained by the machine.


Why is the ama of a machine always less than the ima of a machine?

The actual mechanical advantage (AMA) of a machine is always less than the ideal mechanical advantage (IMA) due to factors such as friction, inefficiencies in the machine's design, and other losses of energy. As a result, the actual output force of a machine is typically less than the input force required to operate it, leading to a lower actual mechanical advantage compared to the ideal mechanical advantage.


What is actual mechanical advantage in physics?

Actual mechanical advantage in physics is the ratio of the output force to the input force in a mechanical system, taking into account factors such as friction and inefficiencies in the system. It is a measure of how much a machine multiplies the force applied to it, and is always less than the ideal mechanical advantage due to these losses.


Why do you multiply to find the total mechanical advantage?

The "Ideal Mechanical Advantage" of a simple machine isIMA = output force /input force . To find the 'actual' or real-world mechanical advantage,multiply the IMA by the machine's efficiency.


If you know the input distance and output distance of a machine which of the following can you calculate?

Type your answer here... The actual mechanical advantage.


The more efficient a machine is the closer the actual mechanical advantage is to the?

Perfect efficiency


How does the ideal compare with the actual mechanical advantage?

The ideal mechanical advantage is based on the geometric relationships of a machine's components and assumes no energy losses, while the actual mechanical advantage accounts for friction, inefficiencies, and other factors that can reduce the output compared to the input force. In reality, the actual mechanical advantage is always less than the ideal mechanical advantage due to these energy losses.