Chat with our AI personalities
To find any term of a geometric sequence from another one you need the common ration between terms: t{n} = t{n-1} × r = t{1} × r^(n-1) where t{1} is the first term and n is the required term. It depends what was given in the geometric sequence ABOVE which you have not provided us. I suspect that along with the 10th term, some other term (t{k}) was given; in this case the common difference can be found: t{10} = 1536 = t{1} × r^9 t{k} = t{1} × r^(k-2) → t{10} ÷ t{k} = (t{1} × r^9) ÷ (t{1} × r^(k-1)) → t{10} ÷ t{k} = r^(10-k) → r = (t{10} ÷ t{k})^(1/(10-k)) Plugging in the values of t{10} (=1536), t{k} and {k} (the other given term (t{k}) and its term number (k) will give you the common ratio, from which you can then calculate the 11th term: t{11} = t(1) × r^9 = t{10} × r
get off the computer and do your work.
P=q/r* * * * *The correct answer is P = k*q/r where k is the constant of proportionality.
Well, honey, if we follow the order given, it goes like this: J, H, R, G, and K. So, the second boy in line would be H. But hey, if those boys are causing this much confusion climbing a hill, maybe they should consider taking up a different hobby!
Suppose N is a perfect number. Then N cannot be a square number and so N has an even number of factors.Suppose the factors are f(1) =1, f(2), f(3), ... , f(k-1), f(k)=N.Furthermore f(r) * f(k+1-r) = N for r = 1, 2, ... k so that f(r) = N/f(k+1-r)which implies that 1/f(r) = f(k+1-r)/NThen 1/f(1) + 1/(f(2) + ... + 1/f(k)= f(k)/N + f(k-1)/N + ... + f(1)/N= [f(k) + f(k-1) + ... + f(1)] / N= 2N/N since, by definition, [f(k) + f(k-1) + ... + f(1)] = 2N