The term "light-independent reactions" is misleading because even though the Calvin cycle does not directly rely on light to function, it does require the products of the light-dependent reactions (such as ATP and NADPH) to drive the process. Therefore, light indirectly influences the Calvin cycle by providing the necessary energy molecules.
The dark reactions of photosynthesis are also known as the Calvin cycle or the light-independent reactions. These reactions take place in the stroma of chloroplasts and involve the conversion of carbon dioxide into glucose using ATP and NADPH produced during the light-dependent reactions.
The light-dependent reactions of the Calvin cycle require light to occur and take place in the thylakoid membranes of the chloroplast. These reactions generate ATP and NADPH. In contrast, the dark reactions (Calvin-Benson cycle) occur in the stroma of the chloroplast and use ATP and NADPH from the light-dependent reactions to fix carbon dioxide and produce sugars.
Its the Calvin Cycle.
Light dependent reactions were discovered by Hill, thus are also known as Hill's Light Reactions.
The Calvin cycle is a series of chemical reactions that occur in the chloroplasts of plant cells, and it is essential for photosynthesis. The term "cycle" refers to the fact that the reactions in the Calvin cycle are repeated in a continuous loop, allowing plants to convert carbon dioxide into glucose and other important molecules.
The two major sets of reactions involved in photosynthesis are the light-dependent reactions and the light-independent reactions (Calvin cycle). In the light-dependent reactions, light energy is used to produce ATP and NADPH, while in the Calvin cycle, ATP and NADPH are used to convert carbon dioxide into glucose.
The dark reactions of photosynthesis are also known as the Calvin cycle or the light-independent reactions.
because the Calvin cycle does not require light
The main processes in the in dependant reactions are collectively called the Calvin Cycle.
In Canada
Light dependent reactions of photosynthesis are also known as the light reactions. These reactions occur in the thylakoid membranes of chloroplasts and involve the absorption of light energy to produce ATP and NADPH, which are used in the Calvin cycle to generate glucose. Oxygen is also produced as a byproduct of these reactions.
The dark reactions of photosynthesis are also known as the Calvin cycle or the light-independent reactions. These reactions take place in the stroma of chloroplasts and involve the conversion of carbon dioxide into glucose using ATP and NADPH produced during the light-dependent reactions.
The light reactions provide the energy carriers used in the Calvin cycle
Calvin cycle does not belong in this phrase as it is a part of the light-independent reactions (also known as the Calvin cycle), while the other two, light dependent reactions and chlorophyll, are related to the process of photosynthesis that occurs in the presence of light.
The light reactions occur in the thylakoid membranes of the chloroplasts, while the Calvin cycle (dark reactions) occurs in the stroma of the chloroplasts. The light reactions capture light energy and convert it into chemical energy (ATP and NADPH), which is used in the Calvin cycle to fix carbon dioxide and produce sugars.
The light-dependent reactions of the Calvin cycle require light to occur and take place in the thylakoid membranes of the chloroplast. These reactions generate ATP and NADPH. In contrast, the dark reactions (Calvin-Benson cycle) occur in the stroma of the chloroplast and use ATP and NADPH from the light-dependent reactions to fix carbon dioxide and produce sugars.
Its the Calvin Cycle.