The coefficient of discharge of a venturi meter is calculated to account for any discrepancies between the theoretical flow rate and the actual flow rate. It helps in correcting for losses due to friction and other factors in the fluid flow, and ensures accurate measurement of the flow rate through the venturi meter.
The coefficient of discharge is needed to account for energy losses and inefficiencies in fluid flow systems. It helps to adjust theoretical calculations to more closely match real-world conditions, resulting in more accurate predictions and designs for fluid flow applications.
The coefficient of variation is calculated by dividing the standard deviation of a dataset by the mean of the same dataset, and then multiplying the result by 100 to express it as a percentage. It is a measure of relative variability and is used to compare the dispersion of data sets with different units or scales.
coefficient of discharge depends on the state of the machine/system you are using. if you are using very textured tubes then this number will be higher. if how ever you are using very flexable tubes and fluid at different pressures this can also effect your results as the inflow and outflow may be different, or the cross sectional area of the tubes again chganging the pressure/flow and thus you Cd value
The coefficient of kinetic friction can be calculated using the formula: coefficient of kinetic friction = force of kinetic friction / normal force. The force of kinetic friction can be found using the formula: force of kinetic friction = coefficient of kinetic friction * normal force. Given the force of 31N and normal force equal to the weight of the crate (mg), you can calculate the coefficient of kinetic friction.
The block coefficient (CB) is calculated as the ratio of the underwater volume of a ship's hull to the volume of a rectangular block that has the same overall length, breadth, and draft as the ship. The formula for block coefficient is: [ CB = \frac{V_{ship}}{L \times B \times T} ] Where: CB = Block coefficient Vship = Underwater volume of the ship's hull L = Length of the ship B = Breadth of the ship T = Draft of the ship
Coefficient of discharge of an ideal liquid can be defined as a ratio of actual discharge and theoretical discharge. where, Cofficient of discharge = Actual Discharge/ Theoretical discharge.
afasmailbox@rediffmail.com
In Venturi meter losses are less so coefficient of discharge is higher whereas in orifice meter due to no convergent and divergent cones there are more losses and hence its coefficient of discharge is less.In venturi meter losses are low due to steamline shape of the diffuser and the pressure gradient is not abrupt as in case of orifice meter.
.623
.623
What is the working principle of venturimeter?
Because, the scientist name VENTURI had discover that device as flow measurment. So that it call as venturimeter.
Factors that affect the value of coefficient of discharge include the geometry of the orifice or nozzle, roughness of the opening, fluid properties such as viscosity and density, and the flow regime (e.g., laminar or turbulent flow). Additionally, the presence of obstructions or inlet/outlet conditions can also impact the coefficient of discharge.
approximately equal to 0.6
Expansion coefficient
The horizontal friction coefficient can be calculated using the formula: μ = F_h / N, where μ is the friction coefficient, F_h is the horizontal friction force, and N is the normal force acting on the object. The horizontal friction force can be calculated as F_h = μ* N, where N is the normal force and μ is the friction coefficient.
Yes, the coefficient of viscosity for Mercury can be calculated using Stoke's Law.