The molecular formula for potassium dichromate is K2Cr2O7. The percentage of oxygen in potassium dichromate is calculated as follows:
Molecular weight of oxygen: 16 g/mol
Molecular weight of K2Cr2O7: 294 g/mol
Percentage of oxygen in K2Cr2O7: (16 g/mol / 294 g/mol) * 100% = 5.44%
Therefore, oxygen constitutes approximately 5.44% of the compound potassium dichromate.
The formula means, among other things, that there are 7 atoms of oxygen in each mole of the compound. Therefore, in 4.00 moles of the compound, there are 28.00 moles of oxygen atoms. Elemental oxygen usually is diatomic, so that there would be the equivalent of 14 moles of diatomic elemental oxygen.
The chemical reaction between hydrogen peroxide (H2O2) and potassium dichromate (K2Cr2O7) in acidic medium produces chromium(III) sulfate (Cr2(SO4)3), water (H2O), and oxygen gas (O2). This reaction is used in the laboratory to test for the presence of alkenes due to the oxidizing properties of potassium dichromate.
if this is math and your asking what gas has a percent by volume 78.09 it is nitrogen
The provider of oxygen in a chemical reaction is called an oxidizing agent or oxidant. It is responsible for accepting electrons from another reactant, which results in the oxidation of that reactant.
Grass produces approximately 28% of the oxygen on Earth through the process of photosynthesis.
There are 6 moles of oxygen atoms in 2 moles of potassium dichromate (K2Cr2O7). Each mole of K2Cr2O7 contains 7 oxygen atoms, so 2 moles would contain 14 oxygen atoms. The molar mass of oxygen is 16 g/mol, so there would be 224 grams of oxygen in 2 moles of K2Cr2O7.
In one mole of potassium dichromate, there seven moles of oxygen. This means in two moles of K2Cr2O7, there are 14 moles of O, or 7 Moles of O2, which equals 224 grams.
In potassium dichromate (K2Cr2O7), the molar mass is 294.18 g/mol. Therefore, 2 moles of K2Cr2O7 will contain 2 x 294.18 = 588.36 grams of the compound. Since there are 7 oxygen atoms in each molecule of K2Cr2O7, the total mass of oxygen in 2 moles will be 7 x 16 (molar mass of oxygen) x 2 = 224 grams.
Potassium dichromate contain potassium, chromium and oxygen.
In 2 moles of potassium dichromate, there are 16 moles of oxygen atoms (from the two oxygen atoms in each formula unit). The molar mass of oxygen is 16 g/mol, so in 2 moles of potassium dichromate, there are 32 grams of oxygen.
When potassium dichromate (K2Cr2O7) is heated, it decomposes into potassium chromate (K2CrO4) and oxygen gas (O2) is released. The color of the compound changes from orange to yellow as it loses oxygen atoms during the decomposition process.
The formula means, among other things, that there are 7 atoms of oxygen in each mole of the compound. Therefore, in 4.00 moles of the compound, there are 28.00 moles of oxygen atoms. Elemental oxygen usually is diatomic, so that there would be the equivalent of 14 moles of diatomic elemental oxygen.
In potassium dichromate (K2Cr2O7), there are 7 oxygen atoms per molecule. Therefore, two moles of K2Cr2O7 would contain 14 moles of oxygen atoms. Each mole of oxygen atoms has a molar mass of approximately 16 grams, so there would be 224 grams of oxygen in two moles of potassium dichromate.
+6 for Cr
The chemical reaction between hydrogen peroxide (H2O2) and potassium dichromate (K2Cr2O7) in acidic medium produces chromium(III) sulfate (Cr2(SO4)3), water (H2O), and oxygen gas (O2). This reaction is used in the laboratory to test for the presence of alkenes due to the oxidizing properties of potassium dichromate.
11 atoms, 2 oatssium, 2 chromium, 7 oxygen. No molecules as such. 2 K+ and the polyatomic anion Cr2O72-.
The oxidation number of chromium in K2Cr2O7 is +6. Each potassium ion has an oxidation state of +1, and each oxygen atom has an oxidation state of -2. By setting up an equation based on the overall charge of the compound, it can be determined that chromium has an oxidation state of +6.