You have it backwards. The atomic weight of thorium 90 is 232.0381
Thorium constitutes about 4E-8% of the visible baryonic matter of the universe by mass. Visible baryonic matter is about 4.9% of the total mass of the universe, as per the latest estimates. So the mass-percentage of thorium in the universe would be 4E-8 x 0.049 = ... very little.
The equation that explains mass defect is E=mc^2, where E is the energy equivalent of the mass defect, m is the mass defect, and c is the speed of light in a vacuum. This equation shows that when a nucleus is formed from individual protons and neutrons, a small amount of mass is converted into energy.
The Energy required o form a nucleus from its parts
To find the mass defect, subtract the atomic mass of tritium (3.016049) from the sum of the masses of the individual particles (3 protons and 2 neutrons). To find the binding energy, use Einstein's equation E=mc^2, where m is the mass defect calculated earlier.
The atomic weight (not mass !) of thorium is 232,0381.
Thorium, with the chemical symbol Th, is the chemical element with the atomic number 90.
thorium
The atomic weight of thorium 232 is 232,0381
232.0381
Nuclear binding energy is the energy required to hold the nucleus together. The mass defect is the difference between the mass of a nucleus and the sum of the masses of its individual protons and neutrons. The mass defect is converted into nuclear binding energy according to Einstein's famous equation, E=mc^2, where E is the energy, m is the mass defect, and c is the speed of light.
The mass of a nucleus is subtracted from the sum of the masses of its individual components.
You have it backwards. The atomic weight of thorium 90 is 232.0381
Thorium constitutes about 4E-8% of the visible baryonic matter of the universe by mass. Visible baryonic matter is about 4.9% of the total mass of the universe, as per the latest estimates. So the mass-percentage of thorium in the universe would be 4E-8 x 0.049 = ... very little.
If you add the exact mass of the protons, neutrons, and electrons in an atom you do not get the exact atomic mass of the isotope. The diference is called the mass defect. The difference between the mass of the atomic nucleus and the sum of the masses of the particles within the nucleus is known as the mass defect.
The mass number of thorium-234 is 234. This number represents the sum of the protons and neutrons in the nucleus of an atom of thorium-234.
The main isotopes of thorium are thorium-232, thorium-230, and thorium-229. Thorium-232 is the most abundant and stable isotope of thorium, while thorium-230 and thorium-229 are radioactive isotopes that undergo decay processes.