The frequency of 220 Hz with a wavelength of 3 meters can be calculated using the formula v = fλ, where v is the velocity of the wave. Assuming the velocity is the speed of sound in air (343 m/s), we can rearrange the equation to solve for frequency: f = v/λ = 343/3 = 114.33 Hz. Therefore, the frequency is approximately 114.33 Hz.
To convert from frequency (Hz) to wavelength (m), you can use the formula: Wavelength (m) = Speed of Light (m/s) / Frequency (Hz). The speed of light is approximately 3 x 10^8 m/s. Therefore, for a frequency of 262 Hz, the wavelength would be approximately 1145 meters.
To calculate the wavelength of the musical note, you can use the formula: wavelength = speed of sound / frequency. Plugging in the values gives: wavelength = 345 m/s / 26.6 Hz = 12.97 meters. So, the wavelength of the musical note is approximately 12.97 meters.
To find the wavelength, you can use the formula: wavelength = speed of sound / frequency. Plugging in the values, wavelength = 1430 m/s / 286 Hz = 5 meters. Therefore, the wavelength of the sound traveling through the water is 5 meters.
The formula to calculate wavelength is: wavelength = speed of sound / frequency. Substituting the values given, we get: wavelength = 1430 m/s / 286 Hz = 5 meters. Therefore, the wavelength of the sound traveling through water with a frequency of 286 Hz is 5 meters.
When a 440 Hz sound is sent through steel, a wavelength of 11.6 meters is measured. What is the velocity of the sound through steel
The wavelength can be calculated using the formula: wavelength = speed / frequency. Plugging in the values provided, we get wavelength = 2 m/s / 15 Hz = 0.133 meters.
The speed of a wave is calculated by multiplying its wavelength by its frequency. Therefore, the speed of the wave with a 0.2 Hz wavelength and 100 meters frequency would be 20 meters per second (0.2 Hz * 100 meters = 20 m/s).
To find the speed of the wave, you can use the formula: speed = frequency x wavelength. Given the frequency is 0.2 Hz and wavelength is 100 meters, you can calculate the speed of the wave as 0.2 Hz x 100 meters = 20 meters per second.
The wavelength for a frequency of 1 million Hz is 300 meters. This can be calculated using the formula: wavelength = speed of light / frequency. In this case, the speed of light is approximately 300 million meters per second.
The wavelength of a sound wave at 350 Hz frequency in air is approximately 0.97 meters.
The wavelength of a wave can be calculated using the formula: wavelength = speed / frequency. Given the frequency of 60 Hz and speed of 45 m/s, the wavelength would be 0.75 meters.
The speed of a wave is equal to the product of its wavelength and its frequency. (If you want to have the speed in meters/second, convert the wavelength to meters first.)
The speed of a wave can be calculated using the formula: speed = frequency × wavelength. Given a frequency of 3 Hz and a wavelength of 8 meters, the speed of the wave would be 24 meters per second.
The speed of a wave can be calculated using the formula: speed = frequency x wavelength. Given that the frequency is 1.5 Hz and the wavelength is 2 meters, the speed of the wave would be 3 meters per second (1.5 Hz x 2 meters).
Frequency = (speed) / (wavelength) = 900/9 = 100 Hz.
The wavelength of the wave can be calculated using the formula: wavelength = speed of wave / frequency. Plugging in the values given - speed of 90 m/s and frequency of 60 Hz - the wavelength would be 1.5 meters.
The metric units for wavelength are meters (m) and for frequency are Hertz (Hz).