Half of a radioactive isotope is an atom that would have half of the atomic number of the radioactive isotope. In the case of radium-88 (88Ra), half of the radioactive isotope would be ruthenium-44 (44Ru). This assumes that the protons do not break down and that none are lost to additional reactions with other elements or compounds. Electrons can be lost along the radioactive chain, resulting in an ion of ruthenium rather than an electrically neutral atom.
Answer : When the isotopes decay, scientists can find out how old the rock is depending on the radioactive isotope's half-life. Explanation: Radioactive isotopes are unstable and will decay. For example, when humans die carbon-14 decays. The isotopes will decay into a stable isotope over time. Scientists can tell how old the rock was from looking at the radioactive isotope's half-life, which tells them how long it would take for there to be half the radioactive isotope and half the stable isotope. At the next half-life there will be 25% of the radioactive isotope and 75% of the stable isotope. At the next half life there will be 12.5% radioactive and 87.5% stable. Example: Carbon-14 is a radioactive isotope with a half life of 5,730 years. How old would carbon-14 be when there is 75% carbon-14 in the rock? 75% is half of the time before the half-life, so it would be 2,365 years. Hope this helps. Half life helps scientists find how much the isotope has decayed and the age of the rock.
No, the half-life of a radioactive isotope is a constant property of that particular isotope and does not change as it decays. The half-life is defined as the time it takes for half of the atoms in a sample to decay. Once set, the half-life remains constant regardless of how many atoms have decayed.
It's called "half life".
It varies from one element to another. It is measured in terms of its half-life. A half-life is the length of time it takes for half the number of radioactive atoms of the element in a lump to decay.
Half-life
The half-life of a radioactive isotope is the amount of time it takes for one-half of the radioactive isotope to decay. The half-life of a specific radioactive isotope is constant; it is unaffected by conditions and is independent of the initial amount of that isotope.
The half life of an isotope refers to the rate at which a radioactive isotope undergoes radioactive decay. Specifically, it is the amount of time it takes for half of a given sample of a radioactive isotope to decay.
Isotope A is more radioactive because it has a shorter half-life, indicating a faster rate of decay. A shorter half-life means that more of the isotope will undergo radioactive decay in a given time period compared to an isotope with a longer half-life.
its called Half-Time...
After three half-lives, 12.5% of the radioactive isotope is remaining. This is because each half-life reduces the amount of radioactive material by half.
Answer : When the isotopes decay, scientists can find out how old the rock is depending on the radioactive isotope's half-life. Explanation: Radioactive isotopes are unstable and will decay. For example, when humans die carbon-14 decays. The isotopes will decay into a stable isotope over time. Scientists can tell how old the rock was from looking at the radioactive isotope's half-life, which tells them how long it would take for there to be half the radioactive isotope and half the stable isotope. At the next half-life there will be 25% of the radioactive isotope and 75% of the stable isotope. At the next half life there will be 12.5% radioactive and 87.5% stable. Example: Carbon-14 is a radioactive isotope with a half life of 5,730 years. How old would carbon-14 be when there is 75% carbon-14 in the rock? 75% is half of the time before the half-life, so it would be 2,365 years. Hope this helps. Half life helps scientists find how much the isotope has decayed and the age of the rock.
Answer : When the isotopes decay, scientists can find out how old the rock is depending on the radioactive isotope's half-life. Explanation: Radioactive isotopes are unstable and will decay. For example, when humans die carbon-14 decays. The isotopes will decay into a stable isotope over time. Scientists can tell how old the rock was from looking at the radioactive isotope's half-life, which tells them how long it would take for there to be half the radioactive isotope and half the stable isotope. At the next half-life there will be 25% of the radioactive isotope and 75% of the stable isotope. At the next half life there will be 12.5% radioactive and 87.5% stable. Example: Carbon-14 is a radioactive isotope with a half life of 5,730 years. How old would carbon-14 be when there is 75% carbon-14 in the rock? 75% is half of the time before the half-life, so it would be 2,365 years. Hope this helps. Half life helps scientists find how much the isotope has decayed and the age of the rock.
Yes.
No. It is a constant.
No, the half-life of a radioactive isotope is a constant property of that particular isotope and does not change as it decays. The half-life is defined as the time it takes for half of the atoms in a sample to decay. Once set, the half-life remains constant regardless of how many atoms have decayed.
This is called the "half-life" of the isotope.
This is the time in which half the the atoms was disintegrated.