answersLogoWhite

0


Best Answer

When you hear gene sequencing you first think of DNA mapping. We think of paternity tests but gene sequencing has been used to determine diseases. More recently it has been used to directly help the patient with proper diagnoses.

User Avatar

Wiki User

βˆ™ 13y ago
This answer is:
User Avatar
More answers
User Avatar

AnswerBot

βˆ™ 6mo ago

Gene sequencing is used to determine the precise order of nucleotides within a DNA molecule. This information is valuable for understanding the genetic code of an organism, identifying mutations or variations in genes, and studying genetic diseases or traits. Gene sequencing is also used in fields like personalized medicine, evolutionary Biology, and forensic science.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is gene sequencing used to determine?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

When was gene sequencing discovered?

Gene sequencing was first developed in the late 1970s and early 1980s. The first complete sequencing of a genome, the bacteriophage MS2, was accomplished in 1976, and the first sequencing of a full-length DNA molecule, the bacteriophage Ο†X174, was achieved in 1977.


How is find the gene sequence of an monoclonal antibody found?

To find the gene sequence of a monoclonal antibody, the antibody must first be produced by hybridoma cells cultured in the laboratory. Next, the RNA is extracted from these cells and the gene encoding the antibody is reverse transcribed into DNA. This DNA can then be sequenced using techniques such as Sanger sequencing or next-generation sequencing to determine the gene sequence of the monoclonal antibody.


What does ngs go mean?

"NGS" most likely refers to Next-Generation Sequencing, a high-throughput technique used to sequence DNA or RNA. "GO" could stand for Gene Ontology, a system for classifying genes and their functions. Together, "NGS GO" might refer to the analysis of gene expression data generated through next-generation sequencing using gene ontology terms.


What types of DNA sequencing in their DNA?

The types of DNA sequencing are whole-genome sequencing which maps entire DNA sequences, targeted sequencing which focuses on specific genomic regions, and RNA sequencing which identifies gene expression levels.


How many methods are used in DNA sequencing?

There are several methods used in DNA sequencing, with the most common ones being Sanger sequencing, next-generation sequencing (NGS), and third-generation sequencing technologies like PacBio and Oxford Nanopore. Each method has its strengths and weaknesses, and may be chosen based on the specific requirements of the sequencing project.

Related questions

What does DNA isolation used for?

Gene sequencing and gene cloning


What is DNA sequencing used for?

determine the rick of developing certain diseases


When was gene sequencing discovered?

Gene sequencing was first developed in the late 1970s and early 1980s. The first complete sequencing of a genome, the bacteriophage MS2, was accomplished in 1976, and the first sequencing of a full-length DNA molecule, the bacteriophage Ο†X174, was achieved in 1977.


Why would a person use Sanger sequencing?

A person would use Sanger sequencing to determine the nucleotide sequence of a DNA fragment. It is commonly used for sequencing individual genes, validating genetic edits, or identifying mutations in DNA.


What is the meant by the term rapid sequencing?

Rapid Sequencing. Faster way of DNA sequencing using Computers and cutting down the timeline of the Human genome project. Gene Therapy. The insertion of working copies of a gene into the cells of a person with a genetic disorder in an attempt to correct the disorder.


What methods are used to determine phylogenies?

Phylogeny is discovered using molecular sequencing data and morphological data matrices.


What are gene map's and how are they produced?

Gene maps show the location of genes on a chromosome. They are produced using data from genetic markers that are known to be located near specific genes. Techniques like genetic linkage analysis and genome sequencing are used to determine the order and distance between genes on a chromosome.


How is find the gene sequence of an monoclonal antibody found?

To find the gene sequence of a monoclonal antibody, the antibody must first be produced by hybridoma cells cultured in the laboratory. Next, the RNA is extracted from these cells and the gene encoding the antibody is reverse transcribed into DNA. This DNA can then be sequenced using techniques such as Sanger sequencing or next-generation sequencing to determine the gene sequence of the monoclonal antibody.


What does ngs go mean?

"NGS" most likely refers to Next-Generation Sequencing, a high-throughput technique used to sequence DNA or RNA. "GO" could stand for Gene Ontology, a system for classifying genes and their functions. Together, "NGS GO" might refer to the analysis of gene expression data generated through next-generation sequencing using gene ontology terms.


What is the new mRNA stand produced by this mutated gene?

The specific sequence of the new mRNA strand produced by a mutated gene will depend on the nature of the mutation. Mutations can cause changes in the coding region of the gene, leading to alterations in the mRNA sequence and potentially affecting the resulting protein or gene function. Further analysis and sequencing of the mutated gene would be required to determine the exact mRNA sequence.


Why is it important to determine activity sequencing?

Activity sequencing is established when you decide what is the order that the activities (in a project) should be completed. Thus the clear importance of determining it.


What is the goal of DNA sequencing?

The goal of DNA sequencing is to determine the precise order of nucleotides in a DNA molecule, revealing the genetic information encoded within the DNA. This information enables scientists to study genetic variations, understand gene function, identify mutations, and explore the genetic basis of various traits and diseases.