Euler's equation of motion in spherical polar coordinates describes the dynamics of a rigid body rotating about a fixed point. It includes terms for the inertial forces, Coriolis forces, and centrifugal forces acting on the body. The equation is a vector equation that relates the angular acceleration of the body to the external torques acting on it.
Newton's first equation of motion states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. In other words, an object will maintain its velocity unless a net external force is applied to change it.
The equation of motion was originally discovered by Sir Isaac Newton in his laws of motion. These laws describe the relationship between the motion of an object and the forces acting on it.
Newton's first law of motion states that momentum is a property of a mass system that is conserved as long as no net force is applied on it. If the question refers to Newton's second law of motion, the answer is yes.
F=ma or m=F/a
Newton's 2nd law of motion
The motion of water will be spherical.
a force
means motion of equation
For an object moving with uniform motion, the equation of motion does not change. The equation remains the same as it describes the relationship between an object's position, velocity, and time regardless of whether the motion is uniform or non-uniform. Uniform motion implies constant velocity, so the acceleration term in the equation of motion is zero.
Newton's first equation of motion states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. In other words, an object will maintain its velocity unless a net external force is applied to change it.
Both are same..just the names are different.
The equation of motion was originally discovered by Sir Isaac Newton in his laws of motion. These laws describe the relationship between the motion of an object and the forces acting on it.
The motion of an object described by an equation will depend on the specific equation used. Common equations to describe motion include position, velocity, and acceleration functions. By analyzing these equations, you can determine how the object moves over time, its speed, and its direction of motion.
A body is in motion if it change its position relative to another body or with respect to a frame of reference or coordinate system.
The equation to determine an object in motion is the equation of motion, which is typically represented as: ( s = ut + \frac{1}{2}at^2 ), where ( s ) is the displacement of the object, ( u ) is the initial velocity, ( a ) is the acceleration, and ( t ) is the time.
The equation that connects force and motion is Newton's second law: F = ma, where F is the force applied to an object, m is its mass, and a is its acceleration. This equation quantifies how the force acting on an object influences its motion.
The 1st and 3rd Equation of motion are the same, the force is zero. Thus 0 =force = Sum forces = action + reaction =0