like this:
+15p + -15e = 0 net charge
and that's your bohr model for phosphorus!!!!
A phosphorus atom has 3s, 3p, and 3d orbitals for a total of 5 orbitals.
For a neutral magnesium atom, the orbital diagram would show two electrons in the 1s orbital, two electrons in the 2s orbital, and six electrons in the 2p orbital, following the Aufbau principle and Hund's rule. This configuration can be represented as 1s^2 2s^2 2p^6 in the electron configuration notation.
An electron in a phosphorus atom would experience the greatest shielding in the 3s orbital. This is because electrons in inner shells provide greater shielding than those in outer shells, and the 3s orbital is closer to the nucleus compared to the higher energy orbitals.
Yes, phosphorous (and sulfur) have access to a d orbital. It's a bit weird (as is most chemistry), in the ground state phosphorous does not have any d orbital electrons, however, d orbital hybridization is used to explain why phosphorous can form more than the "octet" number of bonds, such as PCl5. This d orbital is also used when describing phosphorous as a pi-acceptor ligand, and the reason it can be considered a pi-acceptor ligand is because it does have access to that d orbital, which can accept the metal's e- density. Hope that helped.
ml = 0
orbital diagram for F
The correct orbital diagram for sulfur can be represented as: 1s2 2s2 2p6 3s2 3p4. This indicates that sulfur has two electrons in the 1s orbital, two in the 2s orbital, six in the 2p orbital, two in the 3s orbital, and four in the 3p orbital.
The orbital diagram for germanium (Ge) shows its electron configuration as [Ar] 3d10 4s2 4p2. This means that germanium has 2 electrons in its 4p orbital, 2 electrons in its 4s orbital, and 10 electrons in its 3d orbital.
A phosphorus atom has 3s, 3p, and 3d orbitals for a total of 5 orbitals.
An orbital diagram is used to show how the orbitals of a subshell areoccupied by electrons. The two spin projections are given by arrowspointing up (ms =+1/2) and down (ms = -1/2). Thus, electronicconfiguration 1s22s22p1 corresponds to the orbital diagram:
The orbital filling diagram for carbon (C) is 1s^2 2s^2 2p^2. This indicates that the carbon atom has 2 electrons in the 1s orbital, 2 electrons in the 2s orbital, and 2 electrons in the 2p orbital.
Five. Two in the 3s orbital and three in the 3p orbitals (one in each p orbital).
The orbital diagram for chromium with atomic number 24 would show two electrons in the 1s orbital, two electrons in the 2s orbital, six electrons in the 2p orbital, six electrons in the 3s orbital, two electrons in the 3p orbital, and four electrons in the 3d orbital. This configuration would follow the aufbau principle and Hund's rule.
Elements with a 6s1 electron include francium (Fr) and cesium (Cs). In the orbital diagram, the 6s1 electron would be represented as a single arrow pointing upwards in the 6s orbital.
Phosphorus is likely to form the 3d orbital when it becomes an ion. This is because phosphorus typically forms the 3- charge, leading to it losing three electrons and leaving behind the 3d orbital in its ionized form.
For a neutral magnesium atom, the orbital diagram would show two electrons in the 1s orbital, two electrons in the 2s orbital, and six electrons in the 2p orbital, following the Aufbau principle and Hund's rule. This configuration can be represented as 1s^2 2s^2 2p^6 in the electron configuration notation.
The full orbital diagram of S (sulfur) includes 2 electrons in the 1s orbital, 2 electrons in the 2s orbital, and 4 electrons in the 2p orbitals (2 in each p orbital). The electron configuration of sulfur is 1s2 2s2 2p4.