Moderation slows or reduces the energy of neutrons in a nuclear reactor. By doing this, moderation allows continuation of the chain reaction. Neutrons will only cause more fission events when they have a specific range of energy, but they have too much energy when they are first emitted from their precipitating event, hence the need for moderation.
Moderation also regulates the reaction. In the light water moderated reactor, for instance, a common design, water is the moderator. Water is also the heat sink, carrying away the energy of the reaction to make steam which spins turbines and makes electricity. If reactivity were to increase, temperature would also increase, causing an increase in the number of voids in the water. This reduces the effectiveness of the moderator and tends to decrease reactivity. Similarly, if reactivity were to decrease, temperature would decrease, causing voids to decrease, ultimately causing reactivity to increase. Conversely, if the load changes, that will reflect back into the water temperature, causing reactivity to adjust accordingly. It is a self-stabilizing situation.
It is also a safety designed system. If there were a sudden loss of heat sink, such as a turbine load rejection, temperature would go up, causing a decrease in reactivity. If there were a steam line break, causing a depressurization incident, the water would flash to steam and the reactor would go instantly subcritical. In both of these scenarios, there would be time to insert the control rods, forcing the reactor further subcritical, and giving the emergency core cooling systems time to startup.
You did not provide the list of "the following". However, the answer to the question is moderation. Moderation is the process whereby the neutron is slowed down in order to facilitate its subsequent capture by the nuclei of the fuel.
An artificial nuclear reactor is a device that initiates and controls a sustained nuclear chain reaction. This reaction produces heat, which is used to produce electricity in nuclear power plants. The fission process in these reactors generates energy by splitting atomic nuclei.
The number of control rods in a nuclear reactor can vary depending on the design and size of the reactor. Typically, a nuclear reactor can have anywhere from 50 to 100 control rods. These rods are used to control the rate of the nuclear reaction by absorbing neutrons and regulating the power output of the reactor.
A nuclear reactor moisture separator is a component used to separate moisture or steam from the coolant or working fluid circulating within a nuclear reactor system. This helps to maintain the purity and efficiency of the coolant, preventing corrosion and other issues within the system. The separated steam is then typically recycled back into the system or released in a controlled manner.
Nuclear reactor
A Nuclear Reactor.
No, its not simple. It requires a sophisticated balance of temperature, pressure, and moderation in order to sustain a critical nuclear fission reaction.
You did not provide the list of "the following". However, the answer to the question is moderation. Moderation is the process whereby the neutron is slowed down in order to facilitate its subsequent capture by the nuclei of the fuel.
Nuclear reactor kinetics is the branch of reactor engineering and reactor physics and control that deals with long term time changes in reactor fuel and nuclear reactors.
yes, south Africa has a nuclear reactor.
a nuclear reactor converts binding energy into heat. a nuclear power plant uses a nuclear reactor to generate electricity.
simply, the nuclear reactor is the source of heat (or steam) for the nuclear power plant.
A breeder reactor is one type of nuclear reactor, but not a type that is in general commercial use at the present time
The heart of a nuclear power plant is the nuclear reactor.
The last nuclear reactor has not been built yet.
The first Indian nuclear reactor's name is APSARA.
The nuclear fuel is typically contained in the reactor core, which is a central part of the nuclear reactor where the fission reaction takes place. The fuel rods, which contain the nuclear fuel pellets, are inserted into the reactor core during operation.