answersLogoWhite

0


Best Answer

A particle in a one-dimensional potential well is a common problem in quantum mechanics, where a particle is confined to a specific region of space. The behavior of the particle is determined by the shape of the potential well and the energy of the particle. In an infinite potential well, the particle's energy is quantized and can only take on certain allowed values, leading to the formation of discrete energy levels.

User Avatar

AnswerBot

5mo ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Particle in a one dimensional potential well?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

How many number of degrees of freedom for a particle moving ona given space curve?

The number of degrees of freedom for a particle moving on a given space curve is typically three, corresponding to motion in three-dimensional space. This means the particle can move independently along three perpendicular axes.


What is the most fast particle in the world?

Light is currently considered to be the fastest known particle(s) in existence. There are theoretical particles that can function well past the speed of light. One example of such theoretical particle is the Tachyon.


How would you explain an individual particle with string theory?

In string theory, particles are not seen as individual point-like objects, but rather as one-dimensional strings that vibrate at different frequencies. These vibrations give rise to different particle properties, such as mass and charge. Therefore, an individual particle in string theory would be represented by a specific mode of vibration of a string.


In a one-dimensional particle in a box the zero-point energy corresponds to?

The zero-point energy in a one-dimensional particle in a box system corresponds to the minimum energy that the particle can have, even at absolute zero temperature. It arises from the Heisenberg uncertainty principle, which states that particles cannot have zero energy due to their inherent quantum fluctuations.


What is the physical nature of an electron?

An electron is a subatomic particle that carries a negative electric charge. It is considered a fundamental particle, meaning it is not believed to be made up of smaller components. Electrons are found orbiting the nucleus of an atom and play a crucial role in determining the chemical properties of elements.

Related questions

How does the electric potential energy between two charged particles change if one particle's charge is increased by a factor of 2?

The electric potential energy between two charged particles is directly proportional to the product of their charges. If one particle's charge is increased by a factor of 2, the potential energy between the two particles will increase by a factor of 2 as well.


What Electrical potential energy?

Electric potential is like electric potential energy, except electric potential energy requires that you have at least two charged particles: one charged particle (can be considered to be stationary) to produce the electric field and another charged particle to be affected by that electric field. If both charged particles are positively charged, then when you move the nonstationary charged particle closer to the stationary charged particle, potential energy of the system increases, because the charged particles naturally want to repel. However, let's say you remove that nonstationary charged particle and are left with just the single charged particle. There is no more potential energy in the system, because there is no other charged particle to be acted upon by the electric field. However, the single charged particle still emits an electric field. This field is what creates "electric potential." Even though there is no second particle in the system, if you were to place a second particle into the system (let's call it a test particle), its potential energy would be equal to the electric potential multiplied by the charge of the test particle. U = kq1q2/r (electric potential energy with 2 charges, where the 0 of potential energy is infinitely far away) V = kq1/r (electric potential requiring only 1 charge) V = U/q2 (electric potential is potential energy without the second charge) U = Vq2 (electric potential energy is electric potential multiplied by second charge) There is also a concept called gravitational potential, where it's gravitational potential energy divided by the test mass. It can be a negatively charged particle. In that case, electric potential decreases as you get closer to the negatively charged particle. Even though electric potential decreases, if you have two negatively charged particles, electric potential energy increases as you move the 2nd negative charge closer to the first charge. This is because multiplying 2 negative charges makes a positive: U = k(-q1)*(-q2)/r = kq1q2/r (assuming q1 and q2 are the charge magnitudes) So in this case, it's a little weird because that's how the math works. Nature has a tendency to reduce potential energy, but potential is different and doesn't work the same way. However if the test charge was positive, the sign of electric potential energy will be the same as electric potential with respect to location. V = k(-q1)/r = -kq1/r U = k(-q1)(q2)/r = -kq1q2/r Potential energy is not the same as potential! They are related, but don't get them confused. Energy is measured in Joules. Potential is measured in Volts. Completely different units. Volts = Number of Joules / Number of Coulombs. Electric Potential = Electric Potential Energy / Charge of Test Particle


What does electrical potential mean?

Electric potential is like electric potential energy, except electric potential energy requires that you have at least two charged particles: one charged particle (can be considered to be stationary) to produce the electric field and another charged particle to be affected by that electric field. If both charged particles are positively charged, then when you move the nonstationary charged particle closer to the stationary charged particle, potential energy of the system increases, because the charged particles naturally want to repel. However, let's say you remove that nonstationary charged particle and are left with just the single charged particle. There is no more potential energy in the system, because there is no other charged particle to be acted upon by the electric field. However, the single charged particle still emits an electric field. This field is what creates "electric potential." Even though there is no second particle in the system, if you were to place a second particle into the system (let's call it a test particle), its potential energy would be equal to the electric potential multiplied by the charge of the test particle. U = kq1q2/r (electric potential energy with 2 charges, where the 0 of potential energy is infinitely far away) V = kq1/r (electric potential requiring only 1 charge) V = U/q2 (electric potential is potential energy without the second charge) U = Vq2 (electric potential energy is electric potential multiplied by second charge) There is also a concept called gravitational potential, where it's gravitational potential energy divided by the test mass. It can be a negatively charged particle. In that case, electric potential decreases as you get closer to the negatively charged particle. Even though electric potential decreases, if you have two negatively charged particles, electric potential energy increases as you move the 2nd negative charge closer to the first charge. This is because multiplying 2 negative charges makes a positive: U = k(-q1)*(-q2)/r = kq1q2/r (assuming q1 and q2 are the charge magnitudes) So in this case, it's a little weird because that's how the math works. Nature has a tendency to reduce potential energy, but potential is different and doesn't work the same way. However if the test charge was positive, the sign of electric potential energy will be the same as electric potential with respect to location. V = k(-q1)/r = -kq1/r U = k(-q1)(q2)/r = -kq1q2/r Potential energy is not the same as potential! They are related, but don't get them confused. Energy is measured in Joules. Potential is measured in Volts. Completely different units. Volts = Number of Joules / Number of Coulombs. Electric Potential = Electric Potential Energy / Charge of Test Particle


What has potential energy?

Potential energy is a energy stored within a system as a result of the position or configuration of the different parts of that system.The types of potential energy are gravitational potential energy, which is energy due to height, and elastic potential energy, which is energy involved with a stretched or compressed spring.


How electrical potential produce?

Electric potential is like electric potential energy, except electric potential energy requires that you have at least two charged particles: one charged particle (can be considered to be stationary) to produce the electric field and another charged particle to be affected by that electric field.If both charged particles are positively charged, then when you move the nonstationary charged particle closer to the stationary charged particle, potential energy of the system increases, because the charged particles naturally want to repel.However, let's say you remove that nonstationary charged particle and are left with just the single charged particle. There is no more potential energy in the system, because there is no other charged particle to be acted upon by the electric field. However, the single charged particle still emits an electric field. This field is what creates "electric potential." Even though there is no second particle in the system, if you were to place a second particle into the system (let's call it a test particle), its potential energy would be equal to the electric potential multiplied by the charge of the test particle.U = kq1q2/r (electric potential energy with 2 charges, where the 0 of potential energy is infinitely far away)V = kq1/r (electric potential requiring only 1 charge)V = U/q2 (electric potential is potential energy without the second charge)U = Vq2 (electric potential energy is electric potential multiplied by second charge)There is also a concept called gravitational potential, where it's gravitational potential energy divided by the test mass.It can be a negatively charged particle. In that case, electric potential decreases as you get closer to the negatively charged particle. Even though electric potential decreases, if you have two negatively charged particles, electric potential energy increases as you move the 2nd negative charge closer to the first charge. This is because multiplying 2 negative charges makes a positive:U = k(-q1)*(-q2)/r = kq1q2/r (assuming q1 and q2 are the charge magnitudes)So in this case, it's a little weird because that's how the math works. Nature has a tendency to reduce potential energy, but potential is different and doesn't work the same way.However if the test charge was positive, the sign of electric potential energy will be the same as electric potential with respect to location.V = k(-q1)/r = -kq1/rU = k(-q1)(q2)/r = -kq1q2/rPotential energy is not the same as potential! They are related, but don't get them confused. Energy is measured in Joules. Potential is measured in Volts. Completely different units.Volts = Number of Joules / Number of Coulombs.Electric Potential = Electric Potential Energy / Charge of Test Particle


How many number of degrees of freedom for a particle moving ona given space curve?

The number of degrees of freedom for a particle moving on a given space curve is typically three, corresponding to motion in three-dimensional space. This means the particle can move independently along three perpendicular axes.


How long it takes for a particle from the moon to hit earth?

Well, if it is a particle of light (a photon) it takes about a second and a half. If it is any other particle, one that does not move at the speed of light, then you have to define a speed for it.


What is known as the electrical potential?

Electrical potential is the amount of work needed to move a charged particle from one point to another in an electric field, measured in volts. It represents the potential energy per unit charge of a charged object at a specific location.


Can a particle in one dimensional with zero speed may have non zero velocity?

No, a particle in one dimension with zero speed will have zero velocity. Velocity is a vector quantity that includes both the speed and direction of motion, so if the speed is zero, the velocity will also be zero since there is no direction of motion.


What are one-dimensional figure and have infintie length?

Lines! Yes, they are one-dimensional. Points are zero dimensional, planes are two-dimensional, and prisms and such are three dimensional.


What is the most fast particle in the world?

Light is currently considered to be the fastest known particle(s) in existence. There are theoretical particles that can function well past the speed of light. One example of such theoretical particle is the Tachyon.


Which of these applies to form one dimensional two dimensional or three dimensional?

three dimensional