This solution contain 26,3 g NaOH.
The molarity of a NaOH solution is determined by the concentration of NaOH in moles per liter of solution. It is calculated by dividing the moles of NaOH by the volume of solution in liters. For example, a 0.1 M NaOH solution would contain 0.1 moles of NaOH per liter of solution.
The answer is 0,625 moles.
If a drop of NaOH falls out of the flask during titration, the molarity of NaOH in the flask will decrease. This is because the volume of NaOH solution decreases while the amount of solute stays the same, leading to a lower concentration of NaOH in the remaining solution in the flask.
The solution of NaOH in methyl orange indicator will turn from yellow to red. Methyl orange is an acid-base indicator that changes color in response to a change in pH. In the presence of a strong base like NaOH, the indicator will change to a red color indicating the basic nature of the solution.
To prepare a 0.1N solution of NaOH, dissolve 4g of NaOH pellets in enough distilled water to make 1 liter of solution. This will result in a solution with a concentration of 0.1N of NaOH.
Yes, you can make a 1N NaOH solution from a 0.1N NaOH solution by diluting it 10 times. For example, to make 1 liter of 1N NaOH solution, you would mix 100 ml of the 0.1N NaOH solution with 900 ml of water.
This solution contain 26,3 g NaOH.
The molarity of a NaOH solution is determined by the concentration of NaOH in moles per liter of solution. It is calculated by dividing the moles of NaOH by the volume of solution in liters. For example, a 0.1 M NaOH solution would contain 0.1 moles of NaOH per liter of solution.
A 50% NaOH aqueous solution means that the solution contains 50% sodium hydroxide (NaOH) by weight and the rest is water. This concentration indicates that for every 100 grams of the solution, 50 grams is NaOH.
To prepare 0.1N NaOH solution from a 1N NaOH solution, you can dilute 1 part of the 1N solution with 9 parts of water (since 1/10 = 0.1). Measure 1 volume of the 1N NaOH solution and add 9 volumes of water to it, then mix well to get your 0.1N NaOH solution.
To prepare a 1N NaOH solution, you would need to dissolve 40 grams of NaOH in water to make 1 liter of solution. This amount is used because 1N solution means 1 mole of NaOH per liter of solution, and the molar mass of NaOH is 40 g/mol, so 40 grams of NaOH is needed to have 1 mole in 1 liter of solution.
The answer is 0,625 moles.
You would need to add 18.75g of solid NaOH to the 750g of aqueous solution to obtain a 2.5% NaOH solution by mass.
A one molar solution of NaOH in water contains 1 mole of NaOH dissolved in 1 liter of water. This means that the solution has a concentration of 1 mole of NaOH per liter of water.
A 47% NaOH solution means that 47% of the solution is made up of NaOH (sodium hydroxide) and the remaining 53% is composed of other substances, usually water. This indicates the concentration of NaOH in the solution.
The pH of a 0.001N NaOH solution is around 11.9. NaOH is a strong base, and at this concentration, it will result in a highly alkaline solution.