Using Kepler's third law, the period (P) of an object in orbit can be calculated using the formula P^2 = a^3, where a is the semimajor axis in astronomical units (au). For Ceres with a semimajor axis of 2.77 au, the period of its orbit around the Sun is approximately 4.61 years.
An orbit with a large semimajor axis will have the longest period according to Kepler's third law. This means that an orbit with the greatest average distance from the central body will have the longest period.
You can find the major axis, 0.5+31.5 or 32 AU. The semimajor axis is half that, 16 AU. Then you can use Keplers 3rd law to calculate the period, which is 161.5 or 64 years.
The major axis is the diameter across the widest part. The semimajor axis is half that, and for a planet it's the average of the maximum and minimum distances from the Sun .
The period of revolution can be calculated using Kepler's Third Law: P^2 = a^3, where P is the period in years and a is the semimajor axis in astronomical units (AU). In this case, the period of revolution of the planet would be approximately 4.00 years.
Using Kepler's third law, the period (P) of an object in orbit can be calculated using the formula P^2 = a^3, where a is the semimajor axis in astronomical units (au). For Ceres with a semimajor axis of 2.77 au, the period of its orbit around the Sun is approximately 4.61 years.
An orbit with a large semimajor axis will have the longest period according to Kepler's third law. This means that an orbit with the greatest average distance from the central body will have the longest period.
One of the parts of an ellipse is the length of its major axis. Half that is called the semimajor axis. Kepler's 3rd law says that the time to do one orbit is proportional to the 3/2 power of the semimajor axis. IF the semimajor axis is one astronomical unit the period is one year (the Earth). For a planet with a semimajor axis of 4 AUs the period would have to be 8 years, by Kepler-3.
You can find the major axis, 0.5+31.5 or 32 AU. The semimajor axis is half that, 16 AU. Then you can use Keplers 3rd law to calculate the period, which is 161.5 or 64 years.
The major axis is the diameter across the widest part. The semimajor axis is half that, and for a planet it's the average of the maximum and minimum distances from the Sun .
The period of revolution can be calculated using Kepler's Third Law: P^2 = a^3, where P is the period in years and a is the semimajor axis in astronomical units (AU). In this case, the period of revolution of the planet would be approximately 4.00 years.
That can be calculated from Kepler's 3rd law which says if the period is T years the semimajor axis must be T2/3 astronomical units. So for a period of 12 years the s/m axis is 5.421 AU or 784 million km.
The major and minor axes of a circle are the same - either is any diameter. So a semimajor axis is half the diameter which is 12 cm.
One of the parts of an ellipse is the length of its major axis. Half that is called the semimajor axis. Kepler's 3rd law says that the time to do one orbit is proportional to the 3/2 power of the semimajor axis. IF the semimajor axis is one astronomical unit the period is one year (the Earth). For a planet with a semimajor axis of 4 AUs the period would have to be 8 years, by Kepler-3.
The semimajor axis of a planet's orbit is important because it determines the size and shape of the orbit, as well as the distance of the planet from the sun. It helps us understand the planet's position in relation to the sun and other planets, and provides valuable information about the planet's orbital characteristics.
the period of revolution is related to the semimajor axis.... :)
Oh, an interesting question! Mercury's semimajor axis - which is the distance from the center of the Sun to the farthest point of Mercury's orbit - is about 0.39 astronomical units, or around 57.9 million kilometers. That's a nice and cozy space for our little Mercury to dance gracefully around the warm Sun. Nature has a way of creating beauty in all the details like this, doesn't it?